×

zbMATH — the first resource for mathematics

Harmonic analysis for certain representations of graded Hecke algebras. (English) Zbl 0836.43017
For a fixed positive root \(R_+ \subseteq R\) of a root system \(R \subset {\mathfrak a}^*\) of a Euclidean space \(\mathfrak a\) I. Cherednik [Invent. Math. 106, 411-432 (1991; Zbl 0742.20019)] has defined differential operators \(D_\zeta\), \(\zeta \in {\mathfrak h}\) (= complexification of \(\mathfrak a\)), acting in the space of functions on \({\mathfrak h}\) which are invariant for the translations in the lattice \(2 \pi i ZR^\vee\) (\(R^\vee\) = the coroot system). These operators and the Weyl group generate an operator algebra, which is isomorphic to the graded Hecke algebra \(\mathcal H\) in the sense of G. Lusztig [J. Am. Math. Soc. 2, 599-635 (1989; Zbl 0715.22020)]. In this paper the author analyses the properties of the spaces \(C^\infty_c ({\mathfrak a})\) and \(C^\infty (T)\) \((T = i{\mathfrak a}/2\pi iZ R^\vee\)), which are \(\mathcal H\)-modules with natural + and \(*\)-invariant inner products. Decompositions of the spaces into irreducible parts are given, the Paley- Wiener theorem is proved and the inversion and the Plancherel formula are established.

MSC:
43A85 Harmonic analysis on homogeneous spaces
46H15 Representations of topological algebras
16W50 Graded rings and modules (associative rings and algebras)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ban van den, E.P. & Schlichtkrull, H., The most continuous part of the Plancherel decomposition for a reductive symmetric space. To appear. · Zbl 0878.43018
[2] Cherednik I., A unification of Knizhnik-Zamolodchikov equations and Dunkl operators via affine Hecke algebras.Invent. Math. 106 (1991), 411–432. · Zbl 0742.20019
[3] –, Intergration of quantum many-body problems by affine Knizhnik-Zamolodchikov equations.Adv. in Math., 106 (1994), 65–95. · Zbl 0806.35146
[4] – The Macdonald constant-term conjecture.Internat. Math. Res. Notices, 6 (1993), 165–177. · Zbl 0804.17005
[5] Dunkl, C.F., Differential-difference operators associated to reflection groupsTrans. Amer. Math. Soc., 311 (1989), 167–183. · Zbl 0652.33004
[6] Heckman, G.J., Root systems and hypergeometric functions II.Compositio Math., 64 (1987), 353–374. · Zbl 0656.17007
[7] –, An elementary approach to the hypergeometric shift operators of Opdam.Invent. Math., 103 (1991), 341–350. · Zbl 0721.33009
[8] Heckman, G.J. Self adjoint triangular operators are commutative. Unpublished manuscript, 1991.
[9] Heckman, G.J. Lectures on Hypergeometric and Spherical Functions. Notes for the European School of Group Theory. Luminy, 1991.
[10] Heckman, G.J. &Opdam, E.M., Root systems and hypergeometric functions I.Compositio Math., 64 (1987), 329–352. · Zbl 0656.17006
[11] Helgason, S.,Groups and Geometric Analysis. Academic Press, New York-London, 1984. · Zbl 0543.58001
[12] Hörmander, L.,The Analysis of Linear Partial Differential Operators I. Grundlehren Math. Wiss. 256. Springer-Verlag, Berlin-New York, 1983.
[13] Jeu de, M.F.E., The Dunkl transform.Invent. Math., 113 (1993), 147–162. · Zbl 0789.33007
[14] Koornwinder, T.H., A new proof of a Paley-Wiener type thoorem for the Jacobi transform.Ark. Mat., 13 (1975), 145–159. · Zbl 0303.42022
[15] Lusztig, G., Affine Hecke algebras and their graded version.J. Amer. Math. Soc., 2 (1989), 599–685. · Zbl 0715.22020
[16] Macdonald, I.G., The Poincaré series of a Coxeter group.Math. Ann., 199 (1972), 161–174. · Zbl 0286.20062
[17] –, Some conjectures for root systems.SIAM J. Math. Anal., 13 (1982), 988–1007. · Zbl 0498.17006
[18] –, Orthogonal polynomials associated with root systems, inOrthogonal Polynomials: Theory and Practice (Columbus, Ohio, 1989), pp. 311–318. NATO Adv. Sci. Inst. Ser. C, 294. Kluwer, Dordrecht, 1990.
[19] Matsuo, A., Integrable connections related to zonal spherical functions.Invent. Math., 110 (1992), 95–121. · Zbl 0801.35131
[20] Opdam, E.M., Some applications of hypergeometric shift operators.Invent. Math. 98 (1989), 1–18. · Zbl 0696.33006
[21] –, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group.Compositio Math., 85 (1993), 333–373. · Zbl 0778.33009
[22] –, An analogue of the Gauss summation formula for hypergeometric functions related to root systems.Math. Z., 212 (1993), 313–336. · Zbl 0789.33009
[23] Peetre, J., Rectification à l’article ”Une caractérisation abstraite des opérateurs différentiels”.Math. Scand., 8 (1960), 116–120. · Zbl 0097.10402
[24] Rogawski, J.D., On modules over the Hecke algebra of ap-adic group.Invent. Math., 79 (1985), 443–465. · Zbl 0579.20037
[25] Rosenberg, J., A quick proof of Harish-Chandra’s Plancherel theorem for spherical functions on a semisimple Lie group.Proc. Amer. Math. Soc., 63 (1977), 143–149. · Zbl 0322.43008
[26] Varadarajan, V.S.,Lie Groups, Lie Algebras and Their Representations. Graduate Texts in Math., 102. Springer-Verlag, New York-Berlin, 1974. · Zbl 0371.22001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.