×

zbMATH — the first resource for mathematics

A new graph topology. Connections with the compact open topology. (English) Zbl 0836.54010
Let \(E\) be a closed connected subset of \(\mathbb{R}\) and let \({\mathcal C}\) be the set of all the closed non-empty subsets of \(E\). Given \(\Omega \in {\mathcal C}\), let \(G_\Omega\) denote the set of all the graphs of continuous functions in \(C (\Omega, \mathbb{R}^m)\). Let \(G = \bigcup_{\Omega \in {\mathcal C}} G_\Omega\). We endow \(G\) with a new topology called \(\tau\)- topology. It is strictly coarser than the Hausdorff metric topology and strictly finer than the topology of uniform convergence of distance functionals on bounded sets of \(\mathbb{R}^{m + 1}\). The topological space \((G, \tau)\) is homeomorphic to the quotient space \([({\mathcal C}, \tau) \times C (E, \mathbb{R}^m)]/{\mathcal R}\) with a suitable equivalence relation \({\mathcal R}\). The homeomorphic property of the \(\tau\)-topology has a great relevance in the study of functional differential equations. In fact, it allows us to prove existence, uniqueness and continuous dependence of the solutions of hereditary differential equations by means of classical fixed point theorems applied to the homeomorphic functional space. For what concerns the relationships between \(\tau\)-topology and the topologies introduced in \(G_\Omega\) by other authors, note that none of the last ones makes \(G_\Omega\) homeomorphic to the topological space \(C (\Omega, \mathbb{R}^m)\) for arbitrary \(\Omega \in {\mathcal C}\), unless we assume regularity assumption on \(\Omega\). But any regularity assumption on \(\Omega\) would compromise the generality of hereditary structure on differential equations.

MSC:
54C35 Function spaces in general topology
34K05 General theory of functional-differential equations
54C20 Extension of maps
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Attouch H., R.J.B. Wets Quantitative stability of variational systems,The epigraphical distance (1988)
[2] Attouch, H. 1988. ”R.J.B. Wets Quantitative stability of variational systems: A framework for nonlinear conditioning”. Laxenburg, Austria: Working Paper IIASA.
[3] Attouch, H. 1988. ”Wets Quantitative stability of variational systems:III. Stability ofe-minimizers,”. Laxenburg, Austria: Working Paper IIASA.
[4] Attouch H., Trans. Amer. Math. Soc. 328 pp 695– (1991)
[5] Azé D., Functional Anal. Approx., (1989)
[6] Beer G., Can. Math. Bull., 26 pp 418– (1983) · Zbl 0488.54007 · doi:10.4153/CMB-1983-069-6
[7] Beer G., Can, Math. Bull., 28 pp 52– (1985) · Zbl 0542.54009 · doi:10.4153/CMB-1985-004-9
[8] Beer G., Proc. Amer. Math. Soc., 95 pp 653– (1985) · doi:10.1090/S0002-9939-1985-0810180-3
[9] Beer G., Bull. Austral. Math. 38 pp 239– (1988) · Zbl 0669.52002 · doi:10.1017/S0004972700027519
[10] Beer G., Nonlinear Anal. 12 pp 647– (1988) · Zbl 0686.90042 · doi:10.1016/0362-546X(88)90020-X
[11] Beer G., Proc. Amer. Math. Soc., 112 (1) pp 235– (1991) · doi:10.1090/S0002-9939-1991-1033956-1
[12] Brandi P., Atti Sem. Mat. Fis. 35 pp 357– (1987)
[13] Brandi P., J. Diff. Equations, 81 pp 317– (1989) · Zbl 0709.34062 · doi:10.1016/0022-0396(89)90127-7
[14] Castaing C., Springer Lectures Notes in Math., 580 (1977) · doi:10.1007/BFb0087685
[15] Holrá L., Bull. Austral. Math. Soc. 44 pp 11– (1991) · Zbl 0716.54013 · doi:10.1017/S0004972700029415
[16] Kelley, J.L. 1955. ”General topology”. New York: Van Nostrand Reinhold Company. · Zbl 0066.16604
[17] Kelley, J.L. 1966. ”Topology”. New York: Academic Press.
[18] Mosco U., Advances in Mathema,tics, 3 pp 510– (1969) · Zbl 0192.49101 · doi:10.1016/0001-8708(69)90009-7
[19] Naimpally S. A., Trans. Amer. Math. 123 pp 267– (1966) · doi:10.1090/S0002-9947-1966-0192466-4
[20] Nainlpally S. A., Questions and Answers 9 pp 33– (1991)
[21] Poppe H., Fund. Math., 59 pp 159– (1966)
[22] Rudin, W. 1986. ”Functional Analysis”. New Delhi: Tata McGraw - Hill. · Zbl 0867.46001
[23] Sampalmieri R., Atti Sem. Mat. 40 pp 381– (1992)
[24] Sendov B., Russ. Math. Surveys 24 (2) pp 143– (1969) · Zbl 0206.07802 · doi:10.1070/RM1969v024n05ABEH001359
[25] Sendov, B. 1990. ”Haudorff approximatio”. Holland: Kluwer Publishers, Dordrecht.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.