zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-sample empirical likelihood method. (English) Zbl 0837.62039
Summary: The empirical likelihood method is applied to the two-sample problem and is shown to be Bartlett correctable.

62G15Nonparametric tolerance and confidence regions
62E20Asymptotic distribution theory in statistics
Full Text: DOI
[1] Chen, S. X.: On the accuracy of empirical likelihood confidence regions for linear regression model. Ann. inst. Statist. math. 45, 621-637 (1993) · Zbl 0799.62070
[2] Chen, S. X.: Empirical likelihood confidence intervals for linear regression coefficients. J. multivariate anal. 49, 24-40 (1994) · Zbl 0796.62040
[3] Davison, A. C.; Hinkley, D. V.: Saddlepoint approximations in resampling methods. Biometrika 75, 417-431 (1988) · Zbl 0651.62018
[4] Diciccio, T.; Hall, P.; Romano, J.: Bartlett adjustment for empirical likelihood. Technical report 298 (1988) · Zbl 0725.62042
[5] Diciccio, T. J.; Hall, P.; Romano, J. P.: Bartlett adjustment for empirical likelihood. Ann. statist. 19, 1053-1061 (1991) · Zbl 0725.62042
[6] Hall, P.; La Scala, B.: Methodology and algorithms of empirical likelihood. Internat. statist. Rev. 58, No. 2, 109-127 (1990) · Zbl 0716.62003
[7] Hall, P.; Martin, M.: On the bootstrap and two-sample problems. Austral. J. Statist. 30A, 179-192 (1988) · Zbl 0652.62039
[8] Jing, B.; Robinson, J.: The two-sample tilting method. (1993) · Zbl 0877.62042
[9] Ogbonmwan, S. -M; Wynn, H. P.: Resampling generated likelihoods. Statistical decision theory and related topics 4, 137-147 (1988) · Zbl 0706.62006
[10] Owen, A.: Empirical likelihood ratio confidence intervals for single functional. Biometrika 75, 237-249 (1988) · Zbl 0641.62032
[11] Owen, A.: Empirical likelihood ratio confidence regions. Ann. statist. 18, 90-120 (1990) · Zbl 0712.62040
[12] Robinson, J.: Saddlepoint approximations for permutation tests and confidence intervals. J. roy. Statist. soc. Ser. B 44, 91-101 (1982) · Zbl 0487.62016