×

Nonlinear boundary value problems with application to semiconductor device equations. (English) Zbl 0837.65127

This paper deals with rather general elliptic systems of the form \[ - \sum^N_{j= 1} \partial_j a_{ij}(x, u, \nabla u) a_i(x, u, \nabla u)= f_i \] subject to Dirichlet and (nonlinear) Neumann boundary conditions on different portions of the boundary. This system is a general form of one that arises in the modelling of semiconductor devices. Conditions are given ensuring the well-posedness of the problem in an appropriate weak sense, and the author addresses the convergence of solutions to a Galerkin formulation of the discretized problem.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J65 Nonlinear boundary value problems for linear elliptic equations
35Q60 PDEs in connection with optics and electromagnetic theory
78A55 Technical applications of optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] J. F. Bürgler, R. E. Bank, W. Fichtner, R. K. Smith: A new discretization scheme for the semiconductor current continuity equations. IEEE Trans. on CAD 8 (1989), 479-489. · doi:10.1109/43.24876
[2] Z. Chen: Hybrid variable finite elements for semiconductor devices. Comput. Math. Appl. 19 (1990), 65-73. · Zbl 0705.65097 · doi:10.1016/0898-1221(90)90138-A
[3] J. Franců: Monotone operators. A survey directed to applications to differential equations. Apl. Mat. 35 (1990), 257-301. · Zbl 0724.47025
[4] S. Fučík, A. Kufner: Nonlinear Differential Equations. Czech edition - SNTL, Prague, 1978.
[5] H. Gajewski: On uniqueness and stability of steady-state carrier distributions in semiconductors. Proc. Equadiff Conf. 1985, Springer, Berlin, 1986, pp. 209-219. · Zbl 0609.35024
[6] K. Gröger: On steady-state carrier distributions in semiconductor devices. Apl. Mat. 32 (1987), 49-56. · Zbl 0621.35047
[7] H. K. Gummel: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. on Electron Devices ED-11 (1964), 455-465. · doi:10.1109/T-ED.1964.15364
[8] W. Hackbusch: On first and second order box schemes. Computing 41 (1989), 277-296. · Zbl 0649.65052 · doi:10.1007/BF02241218
[9] J. W. Jerome: Consistency of semiconductor modelling: An existence/stability analysis for the stationary Van Roosbroeck system. SIAM J.Appl.Math. 45 (1985), 565-590. · Zbl 0611.35026 · doi:10.1137/0145034
[10] P. A. Markowich: The Stationary Semiconductor Device Equations. Springer-Verlag, Wien-New York 1986.
[11] P. A. Markowich, M. Zlámal: Inverse-average-type finite element discretizations of self-adjoint second order elliptic problems. Math. Comp. 51 (1988), 431-449. · Zbl 0699.65074 · doi:10.1090/S0025-5718-1988-0930223-7
[12] J. Miller: Mixed FEM for semiconductor devices. Numerical Mathematics. Singapore 1988. Proc. Int. Conf., R.P. Agarwal, Y.M. Chow, S.J. Wilson (eds.), Basel, Birkhäuser Verlag, 1988, pp. 349-356.
[13] M. S. Mock: Analysis of Mathematical Models of Semiconductor Devices. Boole Press, Dublin, 1983. · Zbl 0532.65081
[14] J. Nečas: Introduction to the Theory of Nonlinear Elliptic Equations. Teubner Texte zur Math. 52, Leipzig, 1987.
[15] M. Pospíšek: Mathematical Methods in Semiconductor Device Modelling. PhD Thesis, MÚ ČSAV, Prague, 1991.
[16] M. Pospíšek: Convergent algorithms suitable for the solution of the semiconductor device equations. To be published. · Zbl 0834.35010
[17] W.V. Van Roosbroeck: Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29 (1950), 560-607. · Zbl 1372.35295 · doi:10.1002/j.1538-7305.1950.tb03653.x
[18] D. L. Scharfetter, H. K. Gummel: Large signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron Devices ED-16 (1969), 64-77. · doi:10.1109/T-ED.1969.16566
[19] N. Shigyo, T. Wada, S. Yasuda: Discretization problem for multidimensional current flow. IEEE Trans. on CAD 8 (1989), 1046-1050. · doi:10.1109/43.39066
[20] R. S. Varga: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962. · Zbl 0133.08602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.