×

The classification of groups in which every product of four elements can be reordered. (English) Zbl 0838.20038

If \(n\geq 2\) is an integer, \(P_n\) is defined to be the class of groups \(G\) such that for all \(n\)-tuples \((x_1, \dots, x_n)\) of elements of \(G\) there exists a non-trivial permutation \(\sigma\) of \(\{1, \dots, n\}\) such that \(x_{\sigma(1)}x_{\sigma(2)}\dots x_{\sigma (n)}=x_1 x_2\dots x_n\). Trivially \(P_2\) is the class of abelian groups, and M. Curzio, P. Longobardi and M. Maj proved that \(P_3\) is the class of all groups whose commutator subgroup has order at most 2 [Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 74, 136-142 (1983; Zbl 0528.20031)]. In this paper the authors, improving previous results, give a complete classification of groups in the class \(P_4\).

MSC:

20F16 Solvable groups, supersolvable groups
20F05 Generators, relations, and presentations of groups
20F12 Commutator calculus
20E34 General structure theorems for groups
20F24 FC-groups and their generalizations
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)

Citations:

Zbl 0528.20031
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] M. Bianchi - R. Brandl - A. Gillio Berta Mauri , On the 4-permutational property , Arch. Math. , 48 ( 1987 ), pp. 281 - 285 . MR 884558 | Zbl 0623.20022 · Zbl 0623.20022
[2] M. Curzio - P. LONGOBARDI - M. MAJ, Su di un problema combinatorio in teoria dei gruppi, Atti Acc. Lincei Rend. Sci. Mat. Fis . Nat. , 74 ( 1983 ), pp. 136 - 142 . MR 739397 | Zbl 0528.20031 · Zbl 0528.20031
[3] M. Curzio - P. LONGOBARDI - M. MAJ - D. J. S. ROBINSON, On a permutational property of groups , Arch. Math. , 44 ( 1985 ), pp. 385 - 389 . MR 792360 | Zbl 0544.20036 · Zbl 0544.20036
[4] G. Higman , Rewriting products of group elements, Lectures given in Urbana in 1985 (unpublished).
[5] A.G. Kurosh , The Theory of Groups , 2 nd edition ( 2 vols.), Chelsea , New York ( 1960 ). MR 109842 · Zbl 0094.24501
[6] P. Longobardi - M. MAJ, On groups in which every product of four elements can be reordered , Arch. Math. , 49 ( 1987 ), pp. 273 - 276 . MR 913155 | Zbl 0607.20017 · Zbl 0607.20017
[7] P. Longobardi - S. Stonehewer , Finite 2-groups of class 2 in which every product of four elements can be reordered , Illinois J ., 35 ( 1991 ), pp. 198 - 219 . Article | MR 1091438 | Zbl 0698.20013 · Zbl 0698.20013
[8] P. Longobardi - M. Maj - S. Stonehewer , The classification of groups in which every product of four elements can be reordered , preprint, Warwick University . · Zbl 0838.20038
[9] M. Maj - S. Stonehewer , Non-nilpotent groups in which every product of four elements can be reordered , Canadian J. , 42 ( 1990 ), pp. 1053 - 1066 . MR 1099457 | Zbl 0727.20027 · Zbl 0727.20027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.