Longobardi, Patrizia; Maj, Mercede; Stonehewer, Stewart The classification of groups in which every product of four elements can be reordered. (English) Zbl 0838.20038 Rend. Semin. Mat. Univ. Padova 93, 7-26 (1995). If \(n\geq 2\) is an integer, \(P_n\) is defined to be the class of groups \(G\) such that for all \(n\)-tuples \((x_1, \dots, x_n)\) of elements of \(G\) there exists a non-trivial permutation \(\sigma\) of \(\{1, \dots, n\}\) such that \(x_{\sigma(1)}x_{\sigma(2)}\dots x_{\sigma (n)}=x_1 x_2\dots x_n\). Trivially \(P_2\) is the class of abelian groups, and M. Curzio, P. Longobardi and M. Maj proved that \(P_3\) is the class of all groups whose commutator subgroup has order at most 2 [Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 74, 136-142 (1983; Zbl 0528.20031)]. In this paper the authors, improving previous results, give a complete classification of groups in the class \(P_4\). Reviewer: S.Franciosi (Napoli) Cited in 10 Documents MSC: 20F16 Solvable groups, supersolvable groups 20F05 Generators, relations, and presentations of groups 20F12 Commutator calculus 20E34 General structure theorems for groups 20F24 FC-groups and their generalizations 20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects) Keywords:metabelian groups; derived subgroup; permutation property \(P_ 4\) Citations:Zbl 0528.20031 PDF BibTeX XML Cite \textit{P. Longobardi} et al., Rend. Semin. Mat. Univ. Padova 93, 7--26 (1995; Zbl 0838.20038) Full Text: Numdam EuDML References: [1] M. Bianchi - R. Brandl - A. Gillio Berta Mauri , On the 4-permutational property , Arch. Math. , 48 ( 1987 ), pp. 281 - 285 . MR 884558 | Zbl 0623.20022 · Zbl 0623.20022 [2] M. Curzio - P. LONGOBARDI - M. MAJ, Su di un problema combinatorio in teoria dei gruppi, Atti Acc. Lincei Rend. Sci. Mat. Fis . Nat. , 74 ( 1983 ), pp. 136 - 142 . MR 739397 | Zbl 0528.20031 · Zbl 0528.20031 [3] M. Curzio - P. LONGOBARDI - M. MAJ - D. J. S. ROBINSON, On a permutational property of groups , Arch. Math. , 44 ( 1985 ), pp. 385 - 389 . MR 792360 | Zbl 0544.20036 · Zbl 0544.20036 [4] G. Higman , Rewriting products of group elements, Lectures given in Urbana in 1985 (unpublished). [5] A.G. Kurosh , The Theory of Groups , 2 nd edition ( 2 vols.), Chelsea , New York ( 1960 ). MR 109842 · Zbl 0094.24501 [6] P. Longobardi - M. MAJ, On groups in which every product of four elements can be reordered , Arch. Math. , 49 ( 1987 ), pp. 273 - 276 . MR 913155 | Zbl 0607.20017 · Zbl 0607.20017 [7] P. Longobardi - S. Stonehewer , Finite 2-groups of class 2 in which every product of four elements can be reordered , Illinois J ., 35 ( 1991 ), pp. 198 - 219 . Article | MR 1091438 | Zbl 0698.20013 · Zbl 0698.20013 [8] P. Longobardi - M. Maj - S. Stonehewer , The classification of groups in which every product of four elements can be reordered , preprint, Warwick University . · Zbl 0838.20038 [9] M. Maj - S. Stonehewer , Non-nilpotent groups in which every product of four elements can be reordered , Canadian J. , 42 ( 1990 ), pp. 1053 - 1066 . MR 1099457 | Zbl 0727.20027 · Zbl 0727.20027 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.