×

Sojourn times of trapping rays and the behavior of the modified resolvent of the Laplacian. (English) Zbl 0838.35093

Summary: Obstacles \(K\) in an odd-dimensional Euclidean space are considered which are finite disjoint unions of convex bodies with smooth boundaries. Assuming that there are no non-trivial open subsets of \(\partial K\), where the Gauss curvature vanishes, it is shown that there exists a sequence of scattering rays in the complement \(\Omega\) of \(K\) such that the corresponding sequence of sojourn times tends to infinity and consists of singularities of the scattering kernel.
Using this, certain information on the behavior of the modified resolvent of the Laplacian and the distribution of poles of the scattering matrix is obtained. For the same kind of obstacles \(K\), without the additional assumption on the Gauss curvature, it is established that for almost all pairs \((\omega, \theta)\) of unit vectors all singularities of the scattering kernel \(s(t, \omega, \theta)\) are related to sojourn times of reflecting \((\omega,\theta)\)-rays in \(\Omega\).

MSC:

35P25 Scattering theory for PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
47A10 Spectrum, resolvent
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] C. Bardos , J.C. Gumlot and J. Ralston , La relation de Poisson pour l’équation des ondes dans un ouvert non-borné . Comm. PDE , Vol. 7 , 1982 , pp. 905 - 958 . MR 668585 | Zbl 0496.35067 · Zbl 0496.35067 · doi:10.1080/03605308208820241
[2] F. Cardoso , V. Petkov and L. Stoyanov , Singularities of the scattering kernel for generic obstacles . Ann. Inst. Henri Poincaré (Physique théorique) , Vol. 53 , 1990 , pp. 445 - 466 . Numdam | MR 1096103 | Zbl 0729.35099 · Zbl 0729.35099
[3] C. Gérard , Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes . Bull. de S.M.F. , Vol. 116 , Mémoire n^\circ 31, 1988 . Numdam | MR 998698 · Zbl 0654.35081
[4] M. Golubitskii and V. Guillemin , Stabler Mappings and their Singularities , Berlin , Springer , 1973 . MR 341518 | Zbl 0294.58004 · Zbl 0294.58004
[5] V. Guillemin , Sojourn time and asymptotic properties of the scattering matrix . Publ. RIMS Kyoto Univ. , Vol. 12 , 1977 , pp. 69 - 88 . Article | MR 448453 | Zbl 0381.35064 · Zbl 0381.35064 · doi:10.2977/prims/1195196598
[6] L. Hörmander , The Analysis of Linear Partial Differential Operators , Vol. I . Berlin , Springer , 1985 . MR 404822
[7] L. Hörmander , The Analysis of Linear Partial Differential Operators , Vol. III , Berlin , Springer , 1985 . MR 404822 | Zbl 0601.35001 · Zbl 0601.35001
[8] M. Ikawa , Precise information on the poles of the scattering matrix for two strictly convex obstacles . J. Math. Kyoto Univ. , Vol. 27 , 1987 , pp. 69 - 102 . Article | MR 878491 | Zbl 0637.35068 · Zbl 0637.35068
[9] M. Ikawa , Decay of solutions of the wave equation in the exterior of several strictly convex bodies . Ann. Inst. Fourier , Vol. 38 , 1988 , pp. 113 - 146 . Numdam | MR 949013 | Zbl 0636.35045 · Zbl 0636.35045 · doi:10.5802/aif.1137
[10] M. Ikawa , On the existence of the poles of the scattering matrix for several convex bodies . Proc. Japan Acad. , Ser. A , Vol. 64 , 1988 , pp. 91 - 93 . Article | MR 966394 | Zbl 0704.35113 · Zbl 0704.35113 · doi:10.3792/pjaa.64.91
[11] M. Ikawa , On scattering by obstacles , Proceedings of ICM-90 , Springer-Verlag , 1991 , pp. 1145 - 1154 . MR 1159299 | Zbl 0757.35055 · Zbl 0757.35055
[12] P. Lax and R. Phillips , Scattering Theory . New York , Academic Press , 1967 . MR 217440 | Zbl 0186.16301 · Zbl 0186.16301
[13] A. Majda , A representation formula for the scattering operator and the inverse problem for arbitrary bodies . Comm. Pure Appl. Math. , Vol. 30 , 1977 , pp. 165 - 194 . MR 435625 | Zbl 0335.35076 · Zbl 0335.35076 · doi:10.1002/cpa.3160300203
[14] R. Melrose and J. Sjöstrand , Singularities in boundary value problems. I, II . Comm. Pure Appl. Math. , Vol. 31 , 1978 , pp. 593 - 617 and Vol. 37 , 1982 , pp. 129 - 168 . MR 492794 | Zbl 0368.35020 · Zbl 0368.35020 · doi:10.1002/cpa.3160310504
[15] V. Petkov , Scattering Theory for Hyperbolic Operators . Amsterdam , North-Holland , 1989 . MR 1028780 | Zbl 0687.35067 · Zbl 0687.35067
[16] V. Petkov , Le comportement de la résolvante modifiée du Laplacien pour des obstacles captifs . Séminaire EDP , Exposé XVIII, École Polytechnique , 1991 - 1992 . Numdam | MR 1226497 | Zbl 0850.35069 · Zbl 0850.35069
[17] V. Petkov and L. Stoyanov , Periods of multiple reflecting geodesics and inverse spectral results . Amer. J. Math. , Vol. 109 , 1987 , pp. 619 - 668 . MR 900034 | Zbl 0652.35027 · Zbl 0652.35027 · doi:10.2307/2374608
[18] V. Petkov and L. Stoyanov , Singularities of the scattering kernel and scattering invariants for several strictly convex obstacles . Trans. Amer. Math. Soc. , Vol. 312 , 1989 , pp. 203 - 235 . MR 929661 | Zbl 0685.35083 · Zbl 0685.35083 · doi:10.2307/2001214
[19] V. Petkov and L. Stoyanov , Geometry of Reflecting Rays and Inverse Spectral Problems . Chichester , John Wiley & Sons , 1992 . Zbl 0761.35077 · Zbl 0761.35077
[20] J. Sjöstrand and M. Zworski , Lower bounds on the number of scattering poles . Comm. PDE , Vol. 18 , 1993 , pp. 847 - 857 . MR 1218521 | Zbl 0784.35070 · Zbl 0784.35070 · doi:10.1080/03605309308820953
[21] J. Sjöstrand and M. Zworski , Lower bounds on the number of scattering poles, II . J. Funct. Anal. , Vol. 123 , 1994 , pp. 336 - 367 . MR 1283032 | Zbl 0823.35137 · Zbl 0823.35137 · doi:10.1006/jfan.1994.1092
[22] L. Stoyanov , An inverse scattering resultfor several convex bodies . Preprint, Math. Dept., Univ. of Western Australia , 1993 .
[23] B. Vainberg , Asymptotic Methods in Equations of Mathematical Physics . Gordon and Breach Sci. Publ. Ltd ., 1988 . MR 1054376 · Zbl 0907.35078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.