Positive solutions of quasilinear elliptic obstacle problems with critical exponents. (English) Zbl 0838.49008

In this paper it has been considered a problem of finding positive solutions for a quasilinear elliptic obstacle problem with a critical exponent: find \(u\in K=\{v\in W_0^{1,p} (\Omega): v(x)\geq \varphi(x)\) a.e. in \(\Omega\}\) such that \[ \int_\Omega |Du|^{p-2} Du\cdot D(v-u) dx\geq \lambda \int_\Omega u^{p^*-1} (v-u) dx \qquad \forall v\in K, \tag{0.1} \] where \(\Omega\) is a bounded domain, \(2\leq p< n\), \(p^*\) a critical exponent and \(\varphi\in C^{1, \beta} (\Omega)\) \((\varphi|_{\partial \Omega}< 0\), \(\varphi^+\neq 0)\). The author has shown if \(\lambda\) is not too big that (0.1) has a minimal positive solution by using the Ekeland’s variational principle and that in some cases the problem (0.1) has at least two positive solutions by using a variant mountain pass theorem.


49J40 Variational inequalities
35J85 Unilateral problems; variational inequalities (elliptic type) (MSC2000)
Full Text: DOI


[1] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. funct. Analysis, 14, 349-381 (1973) · Zbl 0273.49063
[2] Bahri, A.; Coron, J. M., On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Communs pure appl. Math, 41, 253-294 (1988) · Zbl 0649.35033
[3] Brezis, H.; Lieb, E. H., A relation between pointwise convergence of functions and convergence of integrals, Proc. Am. math. Soc., 88, 486-490 (1983) · Zbl 0526.46037
[4] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Communs pure appl. Math., 36, 437-477 (1983) · Zbl 0541.35029
[5] Coron, J. M., Topologie et cas limite des injections de Sobolev, C.r. Acad. Sci. Paris, 299, 209-212 (1984) · Zbl 0569.35032
[6] Ekeland, I., Nonconvex minimization problems, Bull. Am. math. Soc., 1, 443-474 (1979) · Zbl 0441.49011
[7] Guedda, M.; Veron, L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Analysis, 13, 879-902 (1989) · Zbl 0714.35032
[8] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and Their Applications (1980), Academic Press: Academic Press New York · Zbl 0457.35001
[9] Lions, P.-L., The concentration-compactness principle in the calculus of variations: the limit case, Rev. Mat. Ibero., 2, 45-121 (1985) · Zbl 0704.49006
[10] Mancini, G.; Musina, R., A free boundary problem involving limiting Sobolev exponents, Manuscripta math., 58, 77-93 (1987) · Zbl 0601.49004
[11] Mancini, G.; Musina, R., Holes and obstacles, Ann. Inst. H. Poincare Analyse non Lineaire, 5, 323-345 (1988) · Zbl 0666.35039
[12] Noussair, E. S.; Swanson, C. A.; Jianfu, Y., Quasilinear elliptic problems with critical exponents, Nonlinear Analysis, 20, 285-301 (1993) · Zbl 0785.35042
[13] Pohozaev, S., Eigenfunctions of the equation Δ \(u\) + λ \(f(u) = 0\), Dokl. Akad. Nauk. SSSR, 165, 33-36 (1965)
[14] Rodrigues, J. F., Obstacle Problems in Mathematical Physics, Mathematics Studies, 134 (1987), Elsevier: Elsevier the Netherlands · Zbl 0606.73017
[15] Szukin, A., Minimax principle for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincare Analysis non Lineaire, 3, 77-109 (1986)
[18] Xiping, Z., Nontrivial solution of quasilinear elliptic equations involving critical Sobolev exponent, Scientia Sin., 31, 1166-1181 (1988) · Zbl 0677.35039
[19] Xiping, Z.; Jianfu, Y., Quasilinear elliptic equations involving critical Sobolev exponent on unbounded domains, J. Partial diff. Eqns, 2, 53-64 (1989) · Zbl 0694.35062
[20] Jianfu, Y.; Xiping, Z., On the existence of nontrivial solutions of a quasilinear elliptic boundary value problem for unbounded domains (I) and (II), Acta Math. Sci., 7, 447-459 (1987) · Zbl 0697.35051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.