zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic iterated bootstrap confidence intervals. (English) Zbl 0838.62034
Summary: An iterated bootstrap confidence interval requires an additive correction to be made to the nominal coverage level of an uncorrected interval. Such correction is usually performed using a computationally intensive Monte Carlo simulation involving two nested levels of bootstrap sampling. Asymptotic expansions of the required correction and the iterated interval endpoints are used to provide two new computationally efficient methods for constructing an approximation to the iterated bootstrap confidence interval. The first asymptotic interval replaces the need for a second level of bootstrap sampling with a series of preliminary analytic calculations, which are readily automated, and from which an approximation to the coverage correction is easily obtained. The second interval directly approximates the endpoints of the iterated interval and yields, for the first time, the possibility of constructing an approximation to an iterated bootstrap confidence interval which does not require any resampling. The theoretical properties of the two intervals are considered. The computation required for their construction is detailed and has been coded in a fully automatic user-friendly Fortran program which may be obtained by anonymous ftp. A simulation study which illustrates their effectiveness on three examples is presented.

MSC:
62G09Nonparametric statistical resampling methods
62G15Nonparametric tolerance and confidence regions
65C99Probabilistic methods, simulation and stochastic differential equations (numerical analysis)
62G20Nonparametric asymptotic efficiency
WorldCat.org
Full Text: DOI