×

zbMATH — the first resource for mathematics

Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. (English) Zbl 0838.65109
This paper is concerned with the effective numerical treatment of elliptic boundary value problems when the solutions contain singularities. The paper deals first with the theory of problems of this type in the context of weighted Sobolev spaces and covers problems in domains with conical vertices and non-intersecting edges, as well as polyhedral domains with Lipschitz boundaries.
Finite element schemes on graded meshes for second-order problems in polygonal/polyhedral domains are then proposed for problems with the above singularities. These schemes exhibit optimal convergence rates with decreasing mesh size. Finally, the authors describe numerical experiments which demonstrate the efficiency of our technique in terms of ‘actual’ errors for specific (finite) mesh sizes in addition to the asymptotic rates of convergence.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, Comm. Pure Appl. Math. 12 pp 623– (1959) · Zbl 0093.10401 · doi:10.1002/cpa.3160120405
[2] ’Finite-Elemente-Methoden über lokal verfeinerten Netzen für elliptische Probleme in Gebieten mit Kanten’, Thesis, TU Chemnitz, 1991. · Zbl 0745.65059
[3] Apel, Computing 47 pp 277– (1992) · Zbl 0746.65077 · doi:10.1007/BF02320197
[4] Apel, SIAM J. Numer. Anal.
[5] and , ’An adaptive finite element technique with a-priori mesh grading’, BICOM Report 93/9, Brunel University, Uxbridge; submitted to Numer. Meth. PDE.
[6] Babuška, Numer. Math. 33 pp 447– (1979) · Zbl 0423.65057 · doi:10.1007/BF01399326
[7] Babusk??, Comput. Struct. 10 pp 87– (1979) · Zbl 0395.65058 · doi:10.1016/0045-7949(79)90076-2
[8] Bank, SIAM J. Numer. Anal. 26 pp 1383– (1989) · Zbl 0688.65062 · doi:10.1137/0726080
[9] Bažant, Int. J. Solids Struct. 10 pp 957– (1974) · doi:10.1016/0020-7683(74)90003-1
[10] Beagles, ZAMM 71 pp 423– (1990) · Zbl 0751.73009 · doi:10.1002/zamm.19910711102
[11] Beagles, Math. Meth. in the Appl. Sci. 11 pp 215– (1989) · Zbl 0688.35018 · doi:10.1002/mma.1670110204
[12] Blum, Computing 28 pp 53– (1982) · Zbl 0465.65059 · doi:10.1007/BF02237995
[13] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[14] Clement, RAIRO Anal. Numer. R-2 pp 77– (1975)
[15] ’Elliptic boundary value problems on corner domains’, Lecture Notes in Mathematics, Vol. 1341, Springer, Berlin, 1988.
[16] Dorr, SIAM J. Numer. Anal. 23 pp 58– (1986) · Zbl 0617.65109 · doi:10.1137/0723005
[17] Fichera, Russ. Math. Surveys 30 pp 107– (1975) · Zbl 0343.31007 · doi:10.1070/RM1975v030n03ABEH001413
[18] ’Optimale Finite-Elemente-Approximationen für Funktionen mit Singularitäten’, Thesis, TU Dresden, 1990. · Zbl 0713.65008
[19] Fritzsch, Wiss. Zeitschr. TU Dresden 37 pp 155– (1988)
[20] Elliptic Problems in Non-smooth Domains, Pitman, Boston, 1985.
[21] Grisvard, EDF Bull. Direction Etudes Rech. Sér. C. Math. Inform. 1 pp 21– (1986)
[22] Kondrat’ev, Trudy Moskov. Mat. Obshch. 16 pp 209– (1967)
[23] Kondrat’ev, Differencial’nye uravnenija 13 pp 2026– (1977)
[24] Kozlov, Funkcionalni analis i ego priloshenija 2 pp 38– (1988)
[25] Kozlov, Arch. Rational Mech. Anal. 119 pp 197– (1992) · Zbl 0770.73014 · doi:10.1007/BF00381670
[26] Kozlov, Math. Nachr. 153 pp 123– (1991) · Zbl 0799.35172 · doi:10.1002/mana.19911530112
[27] Kozlov, Math. Nachr.
[28] and , ’Some Applications of Weighted Sobolev Spaces’, Teubner, Leipzig, 1987.
[29] Kuttler, SIAM Rev. 26 pp 163– (1984) · Zbl 0574.65116 · doi:10.1137/1026033
[30] and , Computation of Singular Solutions in Elliptic Problems and Elasticity, Masson, Paris, 1987.
[31] Maz’ya, Trudy Moskov. Mat. Obshch. 37 pp 49– (1978)
[32] Maz’ya, ZAA 2 pp 335– (1983)
[33] Maz’ya, Math. Nachr. 138 pp 27– (1988) · Zbl 0672.35020 · doi:10.1002/mana.19881380103
[34] Maz’ya, Ann. Global Anal. Geometry 9 pp 253– (1991) · Zbl 0753.35013 · doi:10.1007/BF00136815
[35] ’Beitrag zur Berechnung linearer Elastizitätsprobleme mit h-adaptiven Finite-Elemente-Verfahren’, Thesis, TU Magdeburg, 1992.
[36] and , ’Variational-difference methods for solving elliptic equations’, Izdatel’stvo Akad. Nauk. Arm. SSR, Jerevan, 1979 (in Russian).
[37] Papadakis, Comput. Meth. Appl. Mech. Eng.
[38] Peraire, J. Comput. Phys. 72 pp 449– (1987) · Zbl 0631.76085 · doi:10.1016/0021-9991(87)90093-3
[39] ’Randwertprobleme der Elastizitätstheorie für Polyeder – Singularitäten und Approximationen mit Randelementmethoden’, Thesis, TH Darmstadt, 1989. · Zbl 0709.73009
[40] von Petersdorff, Math. Nachr. 149 pp 71– (1990) · Zbl 0780.35026 · doi:10.1002/mana.19901490106
[41] Rank, Comm. Numer. Meth. Eng. 9 pp 121– (1993) · Zbl 0782.65141 · doi:10.1002/cnm.1640090205
[42] Raugel, C. R. Acad. Sci. Paris 286 pp a791– (1978)
[43] Roßmann, ZAA 9 pp 565– (1990)
[44] Sändig, ZAA 9 pp 133– (1990)
[45] Sändig, Rostock. Math. Kolloq. 36 pp 21– (1989)
[46] and , ’Singularities of non-rotationally symmetric solutions of boundary value problems for the Lamé equations in a three dimensional domain with conical points, Proc. Conf. on Analysis on Manifolds with singularities, Breitenbrunn, 1990, pp. 181-193, Teubner, Leipzig, 1992.
[47] Schatz, Math. Comp. 32 pp 73– (1978)
[48] Math. Comp. 33 pp 465– (1979)
[49] Schmitz, Numer. Math. PDE 9 pp 323– (1993) · Zbl 0771.73014 · doi:10.1002/num.1690090309
[50] Scott, Math. Comp. 54 pp 483– (1990) · doi:10.1090/S0025-5718-1990-1011446-7
[51] Stephan, Math. Meth. in the Appl. Sci. 10 pp 339– (1988) · Zbl 0671.35018 · doi:10.1002/mma.1670100309
[52] Strang, Numer. Math. 19 pp 81– (1972) · Zbl 0221.65174 · doi:10.1007/BF01395933
[53] and , An Analysis to the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973.
[54] ’Zur Berechnung von Singulärfunktionen dreidimensionaler elastischer Felder’, Thesis, Universität Stuttgart, 1989. · Zbl 0704.73013
[55] Partielle Differentialgleichungen, Teubner, Leipzig, 1982. · doi:10.1007/978-3-322-96662-9
[56] Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations, Academic Press, London, 1990. · Zbl 0731.65090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.