×

Semantics of parallelism and of choice for the language Electre. (Sémantique du parallélisme et du choix du langage Electre.) (French) Zbl 0838.68074

Summary: The Electre language has been developed as a result of the experience of the automatic control department in the implementation of the real time control applications. These applications consist of tasks that are conditionally executed and interrupted according to some events’ occurrences.
We propose a language semantics and in particular that of its fundamental operators: parallelism of tasks, parallelism of interruptions, and choice of tasks up on interruption.
The deterministic characteristics of this semantic is preented to show that any real time application described by the Electre language can have a deterministic state transmission from any state to another one according to an event occurrence.
A transition system, based on the language syntax, is constructed to obtain the previous results.

MSC:

68Q55 Semantics in the theory of computing
68N15 Theory of programming languages

Software:

Esterel
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] A. ARNOLD, MEC:A system for constructing and analysing transition systems, LABRI, Université de Bordeaux-1, 1988.
[2] G. BERRY et L. COSSERAT, The ESTEREL Synchronous Programming Language and its Mathematical Semantics, Seminar on Concurrency, S. BROOKES and G. WINSKEL eds., Springer-Verlag, Lecture Notes in Computer Science, 1985, n^\circ 197, p. 389-448. Zbl0599.68023 · Zbl 0599.68023
[3] G. BERRY, P. COURONNE et G. GONTHIER, Synchronous Programming of reactive systems: an introduction to ESTEREL, Rapport INRIA n^\circ 646, 1986.
[4] R. H. CAMPBELL et N. HABERMAN, The specification of process synchronization by path expressions, Lecture Notes in Computer Science, 1973, n^\circ 16, p. 89-102. Zbl0295.68028 · Zbl 0295.68028
[5] D. CREUSOT, LEMOINE, ROUX et TRINQUET, Un environnement d’exécution pour Electre, contrat n^\circ STR ELE1, janvier 1991.
[6] P. CASPI, D. PILAUD, N. HALBWACHS et J. A. PLAICE, LUSTRE: a declarative language for programming synchronous systems, 14th ACM Symposium on principles of programming languages, Munich 1987.
[7] D. CREUSOT et J. PERRAUD, Grammaire et analyse syntaxique du langage Electre, Rapport de contrat VEH-ELE-D2, Convention Renault, 1988.
[8] F. CASSEZ et O. ROUX, Compilation du langage Electre, Rapport interne n^\circ 91-11, LAN, École Centrale de Nantes.
[9] J.-P. ELLOY et O. ROUX, Electre; a Language for Control Structuring in Real Time, The Computer Journal, 1985, 28, n^\circ 5, p. 229-234.
[10] P. LE GUERNIC, A. BENVENISTE, P. BOURNAI et T. GAUTIER, SIGNAL: a data-flow oriented language for signal processing, IEEE Trans. on ASSP, ASSP-34, 1986, 2, p. 362-374. · Zbl 0601.68028
[11] M. HUOU, Contribution à la sémantique du langage Electre, Thèse de Doctorat de l’Université de Nantes et de l’École Centrale de Nantes, 1991.
[12] M. HUOU, Une sémantique étendue du langage Electre, Rapport interne n^\circ 92-17, LAN, École Centrale de Nantes, 1992.
[13] D. E. KNUTH, Semantics of Context-Free Languages, Mathematical Systems Theory, 1988, 2, n^\circ 2, p. 127-145; Mathematical Systems Theory, 1971, 5, n^\circ 1, p. 95-96, Correction. Zbl0219.68035 · Zbl 0219.68035
[14] D. E. KNUTH et P. BENDIX, Simple word problems in universal algebras in J. LEECH, ed., Computational problems in abstract algebra. Zbl0188.04902 · Zbl 0188.04902
[15] J. PERRAUD, O. ROUX et M. HUOU, Operational semantics of a kernel of the language Electre, Theoretical Computer Science, in volume 97, 1992. Zbl0769.68085 MR1157806 · Zbl 0769.68085
[16] G. D. PLOTKIN, A Structural Approach to Operational Semantics, Lecture Notes, Computer Science Department, Aarhus University, 1981.
[17] M. RICHARD, Étude de la conjonction des approches synchrone et asynchrone dans les langages réactifs : Application à Electre, Thèse de Doctorat de l’Université de Nantes et de l’École Centrale de Nantes, 1992.
[18] O. ROUX, F. CASSEZ, D. CREUSOT et J.-P. ELLOY, Le langage réactif asynchrone Electre, Technique et Science Informatiques, 1992, vol. 11, n^\circ 5, p. 35-66.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.