Serre, Denis Flows of perfect fluids having two independent space-like variables. Reflection of a plane shock by a compressible wedge. (Écoulements de fluides parfaits en deux variables indépendantes de type espace. Réflexion d’un choc plan par un dièdre compressif.) (French) Zbl 0838.76077 Arch. Ration. Mech. Anal. 132, No. 1, 15-36 (1995). Summary: We consider the Euler equations of a perfect fluid having only two independent space-like variables, which account for the stationary two-dimensional or axisymmetrical three-dimensional cases as well as the two-dimensional Riemann problem. We show that the pressure and the angle between an axis and the velocity field satisfy a first-order system which turns out to be elliptic in the subsonic zone. In particular, the pressure satisfies a maximum principle which has not been stated before, to the best of my knowledge. Using this and the Bernoulli law, we give various a priori estimates of the pressure, the density, the enthalpy, and the velocity in the problem of the reflection of a shock wave by a wedge. We also bound the size of the subsonic region and the force that the fluid applies to the boundary. Cited in 19 Documents MSC: 76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics 76L05 Shock waves and blast waves in fluid mechanics 35Q35 PDEs in connection with fluid mechanics Keywords:Euler equations; Riemann problem; maximum principle; Bernoulli law; a priori estimates; subsonic region × Cite Format Result Cite Review PDF Full Text: DOI References: [1] G. Ben-Dor. Shock wave reflexion phenomena. Springer-Verlag, 1991. [2] T. Chang & G.-Q. Chen. Diffraction of planar shock along a compressive corner. Acta Mathematica. · Zbl 0647.76044 [3] T. Chang & L. Hsiao. The Riemann problem and interaction of waves in gas dynamics. Pitman Surveys in Pure and Appl. Math. 41. Longman, 1989. · Zbl 0698.76078 [4] H. Glaz, P. Colella, I.I. Glass & R. Deschambault. A detailed numerical, graphical and experimental study of oblique shock wave reflections. Lawrence Berkeley Report, 1985. [5] J. Glimm, C. Klingenberg, O. Mcbryan, B. Plohr, D. Sharp & S. Yaniv. Front tracking and twodimensional Riemann problems. Advances in Appl. Math., 6, 259-290, 1985. · Zbl 0631.76068 · doi:10.1016/0196-8858(85)90014-4 [6] A. Heibig & D. Serre. Etude variationnelle du problème de Riemann. J. Diff. Eqns., 96, 56-88, 1992. · Zbl 0777.35053 · doi:10.1016/0022-0396(92)90144-C [7] L. F. Henderson, Regions and boundaries of diffracting shock wave systems. Z. Angew. Math. Mech., 67, 73-86, 1987. · doi:10.1002/zamm.19870670201 [8] H. Hornung. Regular and Mach reflection of shock waves. Ann. Rev. Fluid Mech., 18, 33-58, 1986. · Zbl 0632.76076 · doi:10.1146/annurev.fl.18.010186.000341 [9] P. D. Lax, Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math., 10, 537-566, 1957. · Zbl 0081.08803 · doi:10.1002/cpa.3160100406 [10] M. J. Lighthill, The diffraction of blast. I. Proc. Royal Soc. London A, 198, 454-470, 1949. · Zbl 0041.54307 · doi:10.1098/rspa.1949.0113 [11] A. Sakurai, L. F. Henderson, K. Takayama, Z. Walenta & P. Colella. On the von Neumann paradox of weak Mach reflection. Fluid Dyn. Research, 4, 333-345, 1989. · doi:10.1016/0169-5983(89)90003-8 [12] D. Serre, Oscillations non-linéaires de haute fréquence; dim=1. Collège de France Seminar, Vol XI. J.-L. Lions & H. Brezis eds., Longman, à paraître. [13] Shuli Yang. Numerical Riemarm solutions in multi-pieces for 2-D gas dynamics. Preprint SC 92-20, 1992. ZIB, Berlin. [14] V. M. Teshukov. Stability of regular shock reflection. Zh. Prikl. Mekh. Tekh. Fiz., 2, 26-33, 1989. [15] M. Van Dike. An album of fluid motion. Parabolic Press, Stanford, 1982. [16] J. Von Neumann. Collected works, Vol 6, Pergamon, 1963. · Zbl 0188.00105 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.