×

Flatness and defect of non-linear systems: Introductory theory and examples. (English) Zbl 0838.93022

Flat systems form a class of nonlinear systems which can be transformed, via a certain feedback design, to one which is equivalent to a linear system. Once this is done, the resulting system is subject to the tools available for linearizable systems. The concrete expression of the transformation allows to invert the schemes and interpret them in terms of the original system parameters. The beautifully crafted paper under review introduces this theory by analyzing in detail several case studies, along with the relevant abstract theory. The latter includes the algebraic framework of differential fields, their modules and ideals.
The defect of a differential field is an integer which measures, roughly, how close to a controllable linear system the original systems can be transformed. A flat system is one whose defect is zero. The paper exhibits examples for flat systems, which include the two-dimensional crane and a car with several trailers. Parking the car when there are two trailers is demonstrated in detail, including a reference for a numerical scheme. It is also shown how a non-flat system may be transformed into a flat one using high-frequeny control; this is demonstrated on a variable length pendulum.

MSC:

93B25 Algebraic methods
93B18 Linearizations
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] ACHESON , D. , 1993 , A pendulum theorem .Proceedings of the Royal Society of London, Series A, 443 , 239 – 245 . · Zbl 0784.70019
[2] BAILLIEUL J., Dynamics and Control of Mechanical Systems pp 1– (1993) · Zbl 0793.70020
[3] DOI: 10.1109/TAC.1987.1104698 · Zbl 0631.93056 · doi:10.1109/TAC.1987.1104698
[4] BOGAEVSKI V., Algebraic Methods in Nonlinear Perturbation Theory (1991)
[5] DOI: 10.1137/0331057 · Zbl 0780.34055 · doi:10.1137/0331057
[6] BUSHNELL , L. , TILBURY , D. , and SASTRY , S. , 1993 , Steering chained form nonholonomic systems using sinusoids the firetruck example .Proceedings of the European Control Conference (ECC’93), Groningen , pp. 1432 – 1437 .
[7] CAMPION G., Lecture Notes of the Summer School on Theory of Robots (1992)
[8] DOI: 10.1515/crll.1915.145.86 · JFM 45.0472.03 · doi:10.1515/crll.1915.145.86
[9] DOI: 10.1016/0167-6911(89)90031-5 · Zbl 0684.93043 · doi:10.1016/0167-6911(89)90031-5
[10] CLAUDE D., Algebraic and Geometric Methods in Nonlinear Control Theory pp 181– (1986) · doi:10.1007/978-94-009-4706-1_11
[11] COHN P. M., Free Rings and Their Relations (1985) · Zbl 0659.16001
[12] DOI: 10.1007/BF01211563 · Zbl 0760.93067 · doi:10.1007/BF01211563
[13] CORON J. M., Proceedings of the IFAC Symposium on Nonlinear Control Systems Design pp 658– (1992)
[14] D’ANDRÉA-NOVEL B., Robust Control of Linear and Nonlinear Systems, Mathematical Theory of Networks and Systems (MTNS’89) pp 523– (1990)
[15] DOI: 10.1109/ROBOT.1992.220061 · doi:10.1109/ROBOT.1992.220061
[16] D’ANDRÉA-NOVEL B., Recent Advances in Mathematical Theory of Systems, Control, NetworkSignal Processing II, Mathematical Theory of NetworksSystems (MTNS’89) pp 321– (1992)
[17] DELALEAU E., Comptes Rendus Hebdomadaires des Seances de I’Academie des Sciences, Serie I 315 pp 101– (1992)
[18] DOI: 10.1137/0327035 · Zbl 0696.93033 · doi:10.1137/0327035
[19] DOI: 10.1007/BF02551378 · Zbl 0727.93025 · doi:10.1007/BF02551378
[20] DUBROVIN B., Modern Geometry–Methods and Applications–Part 1 (1984)
[21] DOI: 10.1515/form.1989.1.227 · Zbl 0701.93048 · doi:10.1515/form.1989.1.227
[22] FLIESS M., Essays on Control Perspectives in the Theory and its Applications pp 223– (1993)
[23] FLIESS M., Realization and Modelling in System Theory, MTNS’89 pp 1– (1990) · doi:10.1007/978-1-4612-3462-3_1
[24] FLIESS , M. , LÉVINE , J. , and ROUCHON , P. , 1991 , A simplified approach of crane control via a generalized state-space model .Proceedings of the 30th IEEE Conference on Decision and Control, Brighton , U.K. , pp. 736 – 741 ; 1993 a, A generalized state variable representation for a simplified crane description.International Journal of Control,58, 277–283 . · Zbl 0782.93049
[25] FLIESS M., Proceedings of the IFAC Symposium on Nonlinear Control Systems Design (NOLCOS’92) pp 408– (1992)
[26] GUCKENHEIMER J., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (1983) · Zbl 0515.34001 · doi:10.1007/978-1-4612-1140-2
[27] HARTSHORNE R., Algebraic Geometry (1977) · doi:10.1007/978-1-4757-3849-0
[28] DOI: 10.1007/BF01456663 · JFM 43.0378.01 · doi:10.1007/BF01456663
[29] ISIDORI A., Nonlinear Control Systems (1989) · Zbl 0693.93046 · doi:10.1007/978-3-662-02581-9
[30] JACOBSON N., Basic Algebra, I and II (1985) · Zbl 0557.16001
[31] JAKUBCZYK , B. , 1992 , Remarks on equivalence and linearization of nonlinear systems .Proceedings of the IFAC Symposium on Nonlinear Control Systems Design (NOLCOS’92), Bordeaux , France , pp. 393 – 397 .
[32] DOI: 10.2307/1970810 · Zbl 0179.34302 · doi:10.2307/1970810
[33] KAILATH T., Linear Systems (1980)
[34] KOLCHIN E., Differential Algebra and Algebraic Groups (1973) · Zbl 0264.12102
[35] LANDAU L., Mechanics (1982)
[36] LAUMOND J., IEEE International Conference on Advanced Robotics, 91 ICAR pp 1033– (1991)
[37] DOI: 10.1109/70.326564 · doi:10.1109/70.326564
[38] DOI: 10.1080/00207178708933798 · Zbl 0622.93028 · doi:10.1080/00207178708933798
[39] MARTIN , P. , 1992 , Contribution à létude des systémes diffèrentiellement plats . Ph.D. thesis , École des Mines de Paris ; 1993, An intrinsic condition for regular decoupling. Systems Control Letters, 20, 383–391 .
[40] MARTIN , P. , and ROUCHON , P. , 1993 , Systems without drift and flatness .Proceedings of the Conference on Mathematical Theory of Networks and Systems (MTNS’93), Regensburg , Germany .
[41] DOI: 10.1109/13.57076 · doi:10.1109/13.57076
[42] DOI: 10.1109/TAC.1980.1102426 · Zbl 0454.93021 · doi:10.1109/TAC.1980.1102426
[43] MONACO , S. , and NORMAND-CYROT , D. , 1992 , An introduction to motion planning under multirate digital control .Proceedings of the 31st IEEE Conference on Decision and Control, Tucson , Arizona , U.S.A. , pp. 7180 – 1785 .
[44] MOOG , C. , PERRAUD , J. , BENTZ , P. , and Vo , Q. T. , 1989 , Prime differential ideals in nonlinear rational control systems .Proceedings of the Symposium on Nonlinear Control Systems Design (NOLCOS’89), Capri , Italy , pp. 178 – 182 .
[45] DOI: 10.1109/9.277235 · Zbl 0800.93840 · doi:10.1109/9.277235
[46] NIJMEIJER H., Nonlinear Dynamical Control Systems (1990) · Zbl 0701.93001 · doi:10.1007/978-1-4757-2101-0
[47] POMET J., Workshop on Geometry in Nonlinear Control (1993)
[48] RITT J., Differential Algebra (1950) · doi:10.1090/coll/033
[49] ROUCHON P., Journal of Mathematical Systems, Estimation and Control 4 pp 257– (1994)
[50] ROUCHON P., Proceedings of the European Control Conference (ECC’93) pp 1518– (1993)
[51] SAGDEEV R., Nonlinear Physics (1988)
[52] SEIDENBERG A., Transactions of the American Mathematical Society 73 pp 174– (1952)
[53] DOI: 10.1016/0167-6911(90)90041-R · Zbl 0704.93037 · doi:10.1016/0167-6911(90)90041-R
[54] DOI: 10.1080/00207178808906030 · Zbl 0641.93035 · doi:10.1080/00207178808906030
[55] STEPHENSON A., Philosophical Magazine 15 pp 233– (1908) · doi:10.1080/14786440809463763
[56] DOI: 10.1016/0022-0396(72)90007-1 · Zbl 0242.49040 · doi:10.1016/0022-0396(72)90007-1
[57] SUSSMANN , H. J. , and Liu , W. , 1991 , Limits of high oscillatory controls and the approximation of general paths by admissible trajectories . Proceedings of the 30th IEEE Conference on Decision and Control , Brighton , U.K. , pp. 437 – 442 .
[58] TCHOŃ K., Journal of Mathematical Systems, Estimation and Control 4 pp 165– (1994)
[59] TIKHONOV A., Differential Equations (1980) · Zbl 0492.65014
[60] TILBURY , D. , and CHELOUAH , A. , 1993 , Steering a three-input nonholonomic using multirate controls .Proceedings of the European Control Conference (ECC93), Groningen , The Netherlands , pp. 1428 – 1431 .
[61] TILBURY , D. , SORDALEN , O. , BUSHNELL , L. , and SASTRY , S. , 1993 , A multi-steering trailer system conversion into chained form using dynamic feedback . Technical Report UCB/ERL M93/55 . Electronics Research Laboratory, University of California at Berkeley .
[62] WHITTAKER E., A Treatise on the Analytical Dynamics of Particules and Rigid Bodies (1937) · JFM 63.1286.03
[63] DOI: 10.1109/9.73561 · Zbl 0737.93004 · doi:10.1109/9.73561
[64] WINTER D., The Structure of Fields (1974) · Zbl 0292.12101 · doi:10.1007/978-1-4757-6802-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.