Borel, J.-P.; Laubie, F. Certain words on the real projective line. (Quelques mots sur la droite projective réelle.) (French) Zbl 0839.11008 J. Théor. Nombres Bordx. 5, No. 1, 23-51 (1993). The authors give complete proofs of their results announced in [C. R. Acad. Sci., Paris, Sér. I 313, 483-485 (1991; Zbl 0742.11013)] and F. Laubie [ibid. 565-567 (1991; Zbl 0768.11024)]. This is a pleasant paper playing with words, namely Christoffel and Lyndon words. They link substitutions acting on infinite Christoffel words with the action of \(\text{SL}_2 (\mathbb{Z})\) on the projective real line. Reviewer: P.Liardet (Marseille) Cited in 1 ReviewCited in 57 Documents MSC: 11B85 Automata sequences 68R15 Combinatorics on words 11A55 Continued fractions 11A67 Other number representations Keywords:combinatorics on words; Lyndon word; homography; substitutions; infinite Christoffel words Citations:Zbl 0742.11013; Zbl 0768.11024 PDF BibTeX XML Cite \textit{J. P. Borel} and \textit{F. Laubie}, J. Théor. Nombres Bordx. 5, No. 1, 23--51 (1993; Zbl 0839.11008) Full Text: DOI Numdam EuDML References: [1] Bernoulli, J., Recueil pour les astronomes, Berlin, 1772. [2] Berstel, J., Fibonacci words - a survey, in G. Rozenberg, A. Salomaa, ed., the Book of L, Springer Verlag (1986), 13-27. · Zbl 0589.68053 [3] Borel, J.-P., Laubie, F., Construction de mots de Christoffel, C. R. Acad. Sci. Paris, Série I 313 (1991), 483-485. · Zbl 0742.11013 [4] Brown, T.C., A characterisation of the quadratic irrationals, Canad. Math. Bull.34 (1991), 36-41. · Zbl 0688.10007 [5] Brown, T.C., Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull.36 (1993), 15-21. · Zbl 0804.11021 [6] Crisp, D., Moran, W., Pollington, A., Shiue, P., Substitution invariant cutting sequences, Séminaire de Théorie des Nombres de Bordeaux, Série II, ce volume. · Zbl 0786.11041 [7] Christoffel, E.B., Observatio arithmetica, Annali di Matematica, Ser. 26 (1875), 145-152. · JFM 06.0113.02 [8] Hardy, G.H., Wright, E.M., An introduction to the theory of numbers, Oxford at the Clarendom Press, 4th ed., 1960. · Zbl 0086.25803 [9] Ito, S., Yasutomi, S., On continued fractions, substitutions and characteristic sequences [nx + y] - [(n - 1 )x + y], Japan J. Math.16 (1990), 287-306. · Zbl 0721.11009 [10] Laubie, F., Prolongements homographiques des substitutions de mots de Christoffel, C. R. Acad. Sci. Paris313 Série I (1991), 565-567. · Zbl 0768.11024 [11] Nishioka, K., Shiokawa, I., Tamura, J., Arithmetical properties of a certain power series, J. Number Theory42 (1992), 61-87. · Zbl 0770.11039 [12] Perrin, D., Factorization of Free Monoids, in M. Lothaire, Combinatorics on words, Encyclopedia of Math. and its Applications17, 63-99, Addison-Wesley, 1983. [13] Raney, G.N., On Continued Fractions and Finite Automata, Math. Ann.206 (1973), 265-283. · Zbl 0251.10024 [14] Rauzy, G., Mots infinis en arithmétique, in M. Nivat et D. Perrin ed., Automata on infinite words, Lecture Notes inComputer Science192 (1985), 165-171. · Zbl 0613.10044 [15] Riss, J., Communication personnelle, 1974. [16] Viennot, G., Algèbres de Lie libres et Monoïdes libres, 691 (1978). · Zbl 0395.17003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.