zbMATH — the first resource for mathematics

Formal and rigid geometry. III: The relative maximum principle. (English) Zbl 0839.14013
[For part I and II of this paper see ibid. 295, No. 2, 291-317 and 296, No. 3, 403-429 (1993; Zbl 0808.14017 and 14018)].
This paper on formal and rigid geometry is the third part in a series. The classical maximum principle for affinoid spaces can be found in most treatises on rigid geometry. The aim of this paper is to prove a kind of maximum principle in a relative situation. The framework of admissible formal schemes, such as developed in the parts I and II of the series, is used to state the results.
Consider an admissible formal base scheme \(S\), a flat admissible formal \(S\)-scheme \(X\) and a global function \(f\) on \(X\). Then there exists a rig-flat and rig-quasi finite cover \(S'\to S\). There exists a finite rig-isomorphism \(Y' \to X \times_S S'\) and there exists a rig-invertible function \(\beta\) on \(S'\) and a function \(g\) on \(Y'\) which is invertible on a non empty open part of \(Y'\) and such that \(f = \beta \cdot g\). – If the rigid fibres of \(X/S\) are geometrically reduced then \(S' \to S\) may be assumed to be a rig-étale cover. – If the geometric fibres of \(X/S\) are reduced and irreducible then \(S' \to S\) may be assumed to be an admissible formal blowing up. (In this terminology a formal situation is rig-true if it is true in the associated rigid situation.)
[See also the following review of part IV of this paper].

14G20 Local ground fields in algebraic geometry
14L05 Formal groups, \(p\)-divisible groups
11G25 Varieties over finite and local fields
Full Text: DOI EuDML
[1] Bosch, S., G?ntzer, U., Remmert, R.: Non-Archimedean analysis. Grundlehren Band 261, Berlin-Heidelberg-New York: Springer 1984
[2] Berger, R., Kiehl, R., Kunz, E., Nastold, H.-J.: Differentialrechung in der analytischen Geometrie. Lecture Notes in Math. 38 (1967) · Zbl 0163.03202
[3] Bosch, S., L?tkebohmert, W., Raynaud, M.: N?ron models. Ergebnisse der Mathematik, 3. Folge, Band 21, Berlin-Heidelberg-New York: Springer 1990
[4] Grothendieck, A.: El?ments de G?om?trie Alg?brique. Publ. Math. IHES 4, 8, 11, 17, 20, 24, 28, 32 (1960-67); Springer, Grundlehren Band 166, Berlin-Heidelberg-New York (1971)
[5] Bosch, S., L?tkebohmert, W.: Formal and rigid geometry I. Rigid spaces. Math. Ann. 295, 291-317 (1993) · Zbl 0808.14017
[6] Bosch, S., L?tkebohmert, W.: Formal and rigid geometry II. Flattening techniques. Math. Ann. 296, 403-429 (1993) · Zbl 0808.14018
[7] Bosch, S., L?tkebohmert, W., Raynaud, M.: Formal and rigid geometry IV. The reduced fibre theorem. To appear in Inventiones math. · Zbl 0839.14014
[8] Grauert, H., Remmert, R.: ?ber die Methode der diskret bewerteten Ringe in der nicht-archimedischen Analysis. Invent. math. 2, 87-133 (1966) · Zbl 0148.32401
[9] Kiehl, R.: Die de Rham Kohomologie algebraischer Mannigfaltigkeiten ?ber einem bewerteten K?rper. Publ. Math. IHES 33 (1967) · Zbl 0159.22404
[10] Analytische Familien affinoider Algebren. S.-Ber. Heidelberger Akad. Wiss., 25-49 (1969)
[11] Raynaud, M.: Anneaux locaux hens?liens. Lecture Notes in Math. 169 (1970) · Zbl 0203.05102
[12] Grothendieck, A.: S?minaire de G?om?trie Alg?brique 1960/61. Lecture Notes in Math. 224 (1971)
[13] Tate, J.: Rigid analytic spaces. Invent. math. 12, 257-289 (1971) · Zbl 0212.25601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.