×

The set of maps \(F_{a,b}:x\mapsto x+a+{b\over 2\pi}\sin(2\pi x)\) with any given rotation interval is contractible. (English) Zbl 0839.58021

The rotation interval \([\alpha, \beta]\) of a degree 1 endomorphism of the circle is a generalization of an invariant introduced by Poincaré, the rotation number, which is defined for degree 1 homeomorphisms of the circle. The family of maps \(F_{a,b} : x \mapsto x + a + {b \over 2 \pi} \sin (2 \pi x)\) is known as the standard family of maps of the circle. For \(|b |> 1\), these maps are not homeomorphisms. The authors consider the set \(S_{\alpha, \beta}\) of pairs \((a,b)\) such that the maps \(F_{a,b}\) have a given rotation interval \([\alpha, \beta]\) and show that this set is contractible. They give further information about the structure of the set according to whether \(\alpha\) and \(\beta\) are rational or irrational. The proof is in two parts, the first of which is based on real analysis, using the Schwarzian derivative and combinatorial techniques of one-dimensional dynamics. The second part is complex analytic and makes use of the techniques of quasiconformal mappings and Teichmüller theory.
Reviewer: A.Quas (Cambridge)

MSC:

37E99 Low-dimensional dynamical systems
70K50 Bifurcations and instability for nonlinear problems in mechanics
30C62 Quasiconformal mappings in the complex plane
30F60 Teichmüller theory for Riemann surfaces
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alsedà, L., Mañosas, F.: Kneading theory and rotation intervals for a class of circle maps of degree one. Nonlinearity3, 413–452 (1990) · Zbl 0735.54026
[2] Arnold, V.I.: Small denominators, I. Mappings of the circumference onto itself. AMS Trans.46, 213–284 (1965) · Zbl 0152.41905
[3] Block, L., Franke, J.: Existence of periodic points for maps ofS 1,. Invent. Math.22, 69–73 (1973) · Zbl 0272.58005
[4] Boyland, P.L.: Bifurcations of circle maps: Arnol’d tongues bistability and rotation intervals. Commun. Math. Phys.106, 353–381 (1986) · Zbl 0612.58032
[5] Chenciner, A., Gambaudo, J.M., Tresser, C.: Une remarque sur la structure des endomorphismes de degré un du cercle. C.R. Acad. Sc. Paris série I,299, 771–773 (1984) · Zbl 0584.58003
[6] Dawson, S., Galeeva, R., Milnor, J., Tresser, C.: A monotonicity conjecture for real cubic maps. IMS-SUNY Stonybrook preprint series, #1993/11
[7] Denjoy, A.: Sur les courbes définies par les équations différentielles à la surface du tore. J. de Math. Pures et Appl.11, 333–375 (1932) · JFM 58.1124.04
[8] Epstein, A.: Towers of finite type complex analytic maps. Ph.D. Thesis, CUNY, (1993)
[9] Fatou, P.: Sur les equations fonctionnelles. Bull. Soc. Math. France,47, 161–271 (1919) · JFM 47.0921.02
[10] Fatou, P.: Sur les equations fonctionnelles. Bull. Soc. Math. France,48, 33–94, 208–314 (1920)
[11] Galeeva, R., Martens, M., Tresser, C.: Inducing, slopes, and conjugacies. IMS-SUNY Stonybrook preprint series, #1994/4
[12] Gardiner, F.: Teichmüller Theory and Quadratic Differentials. New York: Wiley-Interscience, 1987 · Zbl 0629.30002
[13] Goldberg, L.R., Keen, L.: A finiteness theorem for a dynamical class of entire functions. J. Ergodic Th. and Dyn. Sys.6, 183–192 (1986) · Zbl 0657.58011
[14] Herman, M.R.: Sur la conjugaison differentiable des diffémorphismes à des rotations. Pub. Math. I.H.E.S.49, 5–234 (1980)
[15] Keen, L.: Dynamics of holomorphic self-maps ofC *. In: D. Drasin et al., editor, Holomorphic Functions and Moduli. M.S.R.I., Springer, 1988 · Zbl 0676.58011
[16] Keen, L.: Julia sets. In: Keen, L., Devaney, R. editors, Chaos and Fractals: The Mathematics Behind the Computer Graphics, chapter Julia Sets, pages 57–74. Providence, KI, AMS, 1989
[17] Kotus, J.: Iterated holomorphic maps on the punctured plane. Preprint #358, Polish Acad. of Math., 1986 · Zbl 0638.30025
[18] Lehto, O.: Univalent Functions and Teichmüller Spaces. Berlin-Heidelberg-New York: Springer, 1987 · Zbl 0606.30001
[19] Lyubich, M.: Non-existence of wandering intervals and structure of topological attractors of one dimensional dynamical systems. I. The case of negative Schwarzian derivative. Erg. Th. & Dyn. Syst.9, 737–750 (1989) · Zbl 0665.58023
[20] Mackay, R.S., Tresser, C.: Transition to topological chaos for circle maps. Physica19D, 206–237 (1986) &29D, 427 (1988) · Zbl 0596.58027
[21] Martens, M., de Melo, W., van Strien, S.: Julia-Fatou-Sullivan theory for real one-dimensional dynamics. Acta Math.168, 273–318 (1992) · Zbl 0761.58007
[22] McMullen, C., Sullivan, D.P.: Quasiconformal homeomorphisms and dynamics: III. Preprint · Zbl 0926.30028
[23] McMullen, C.T.: Families of rational maps and iterative root-finding algorithms. Ann. Math.125, 467–493 (1987) · Zbl 0634.30028
[24] de Melo, W., van Strien, S.: One-Dimensional Dynamics. Berlin, Heidelberg, New York: Springer, 1993 · Zbl 0791.58003
[25] Milnor, J.: Dynamics in one complex variable: Introductory lectures. IMS-SUNY Stonybrook preprint series, #1990/5
[26] Milnor, J., Thurston, W.: On iterated maps of the interval. Springer Lecture Notes,1342, 465–563 (1988) · Zbl 0664.58015
[27] Misiurewicz, M.: Twist sets for maps of the circle. Erg. Th. & Dyn. Syst.4, 391–404 (1984) · Zbl 0573.58019
[28] Newhouse, S., Palis, J., Takens, F.: Stable families of diffeomorphisms. Publ. Math. I.H.E.S.57, 5–71 (1983) · Zbl 0518.58031
[29] Poincaré, H.: Sur les courbes définies par des équations différentielles. J. Math. Pures et Appl., 4eme série,1, 167–244 (1885 Also in: O Euvres Complétes, t 1 Paris: Gauthier-Villars, 1951 · JFM 17.0680.01
[30] Siegel, C.L.: Bermerkg zu einem Satz von Jakob Nielsen. In: Gesammelte Abhandlungen, Vol.3, Berlin-Heidelberg-New York: Springer-Verlag, 1966, pp. 92–96 · Zbl 0143.00101
[31] Sullivan, D.P.: Quasiconformal homeomorphisms and dynamics: I. Ann. Math.122, 401–418 (1985) · Zbl 0589.30022
[32] Uherka, D.J., Tresser, C., Galeeva, R., Campbell, D.K.: Solvable models for the quasi-periodic transition to chaos. Phys. Let. A170, 189–194 (1992), erratum, A177, 461 (1993), and to appear
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.