Generalized Hartree-Fock theory and the Hubbard model. (English) Zbl 0839.60095

Summary: The familiar unrestricted Hartree-Fock variational principle is generalized to include quasi-free states. As we show, these are in one-to-one correspondence with the one-particle density matrices and these, in turn, provide a convenient formulation of a generalized Hartree-Fock variational principle, which includes the BCS theory as a special case. While this generalization is not new, it is not well-known and we begin by elucidating it. The Hubbard model, with its particle-hole symmetry, is well suited to exploring this theory because BCS states for the attractive model turn into usual HF states for the repulsive model. We rigorously determine the true, unrestricted minimizers for zero and for nonzero temperature in several cases, notably the half-filled band. For the cases treated here, we can exactly determine all broken and unbroken spatial and gauge symmetries of the Hamiltonian.


60K40 Other physical applications of random processes
82B10 Quantum equilibrium statistical mechanics (general)
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
82D40 Statistical mechanics of magnetic materials
Full Text: DOI arXiv


[1] H. Araki, On quasifree states of CAR and Bogoliubov automorphisms,Publ. RIMS Kyoto 6: 385–442 (1970/71). · Zbl 0227.46061
[2] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity,Phys. Rev. 108:1175 (1957). · Zbl 0090.45401
[3] V. Bach, E. H. Lieb, M. Loss, and J. P. Solovej, There are no unfilled shells in unrestricted Hartree-Fock theory,Phys. Rev. Lett. 72:2981–2983 (1994).
[4] N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,A New Method in the Theory of Superconductivity (Consultants Bureau, New York, 1959), Appendix 2.
[5] J.-P. Blaizot and G. Ripka,Quantum Theory of Finite Systems (MIT Press, Cambridge, Massachusetts, 1986).
[6] V. Bach, Error bound for the Hartree-Fock energy of atoms and molecules,Commun. Math. Phys. 147:527–548 (1992). · Zbl 0771.46038
[7] M. Cryot, Theory of Mott transition: Application to transient metal oxides,J. Phys. (Paris)33:125–134 (1972).
[8] P. G. de Gennes,Superconductivity of Metals and Alloys (Benjamin, New York, 1966). · Zbl 0138.22801
[9] E. Dagatto, Y. Fand, A. E. Ruckenstein, and S. Schmitt-Rink, Holes in the infiniteU Hubbard model. Instability of the Nagaoka state,Phys. Rev. B 40:7406–7409 (1989).
[10] K. Dichtel, R. H. Jellito, and H. Koppe, The ground state of the neutral Hubbard model,Z. Physik 246:248–260 (1971); Thermodynamics of the Hubbard model,Z. Physik 251:173–184 (1972).
[11] B. Doucot and X. G. Wen, Instability of the Nagaoka state with more than one hole,Phys. Rev. B 40:2719–2722 (1989).
[12] E. Fradkin,Field Theories of Condensed Matter Systems (Addison-Wesley, Reading, Massachusetts, 1991). · Zbl 0984.82504
[13] M. Gaudin, Une démonstration simplifiée du théorème de Wick en méchanique statistique,Nucl. Phys. 15:89–91 (1960). · Zbl 0113.22204
[14] M. C. Gutzwiller, The effect of correlation on the ferromagnetism of transition metals,Phys. Rev. Lett. 10:159–162 (1963).
[15] J. Hubbard, Electron correlations in narrow energy bands,Proc. R. Soc. Lond. A 276:238–257 (1963).
[16] J. Kanamori, Electron correlation and ferromagnetism of transition metals,Prog. Theor. Phys. 30:275–289 (1963). · Zbl 0151.46703
[17] T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long range order,Physica 138A:320–358 (1986). · Zbl 1002.82508
[18] E. H. Lieb, Variational principle for many-fermion systems,Phys. Rev. Lett. 46:457–459 (1981); Errata47:69 (1981).
[19] E. H. Lieb, Two theorems on the Hubbard model,Phys. Rev. Lett. 62:1201–1204 (1989).
[20] E. H. Lieb, The Hubbard model: Some rigorous results and open problems, inAdvances in Dynamical Systems and Quantum Physics, V. Figariet al., eds. (World Scientific, Singapore, in press). · Zbl 1052.82508
[21] E. H. Lieb, Thomas-Fermi and Hartree-Fock theory, inProceedings International Congress Mathematicians (Canadian Mathematical Society, 1975), pp. 383–386.
[22] E. H. Lieb and M. Loss, Fluxes, Laplacians and Kasteleyn’s theorem,Duke Math. J. 71:337–363 (1993). · Zbl 0787.05083
[23] E. H. Lieb, M. Loss, and R. J. McCann, Uniform density theorem for the Hubbard model,J. Math. Phys. 34:891–898 (1993). · Zbl 0773.60091
[24] E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems,Commun. Math. Phys. 53:185–194 (1977).
[25] Y. Nagaoka, Ferromagnetism in a narrow, almost half-filled S-band,Phys. Rev. 147:392–405 (1966).
[26] D.R. Penn, Stability theory of the magnetic phases for a simple model of the transition metals,Phys. Rev. 142:350–365 (1966).
[27] A. Sütõ, Absence of highest spin ground states in the Hubbard model,Commun. Math. Phys. 140:43–62 (1991). · Zbl 0736.58048
[28] B. S. Shastry, H. R. Krishnamurthy, and P. W. Anderson, Instability of the Nagaoka ferromagnetic state of theU=Hubbard model,Phys. Rev. B. 41:2375–2379 (1990).
[29] B. Tóth, Failure of saturated ferromagnetism for the Hubbard model with two holes,Lett. Math. Phys. 22:321–333 (1991). · Zbl 0738.58061
[30] D. J. Thouless, Exchange in solid3He and the Heisenberg Hamiltonian,Proc. Phys. Soc. (London)86:893–904 (1965).
[31] H. Tasaki, Extension of Nagaoka’s theorem on the largeU Hubbard model,Phys. Rev. B 40:9192–9193 (1989).
[32] W. Thirring,A Course in Mathematical Physics, Vol. 4 (Springer, Vienna, 1980), p. 48.
[33] J. G. Valatin, Comments on the theory of superconductivity,Nuovo Cimento [X] 7:843–857 (1958).
[34] C. N. Yang and S. C. Zhang,SO 4 symmetry in a Hubbard model,Mod. Phys. Lett. B 4:759–766 (1990).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.