×

zbMATH — the first resource for mathematics

Coupling the Navier-Stokes equation with the heat equation: The model and its approximation by finite elements. (Couplage des équations de Navier-Stokes et de la chaleur: Le modèle et son approximation par éléments finis.) (French) Zbl 0839.76016
Summary: This paper deals with a problem for viscous incompressible flows, where the Navier-Stokes equations are coupled with the heat equation. Existence and local uniqueness results are established. Next, a finite element approximation of the problem is presented and thoroughly analyzed.

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
35K05 Heat equation
35Q30 Navier-Stokes equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] H. BERESTYCKI, 1975, Méthodes topologiques et problèmes aux limites non linéaires, Thèse de 3e cycle, Université Pierre et Marie Curie.
[2] J. BOUSSINESQ, 1903, Théorie analytique de la chaleur, Volume 2, Gauthier-Villars, Paris. · JFM 34.0887.05
[3] [3] F. BREZZl, J. RAPPAZ, R-A. RAVIART, 1980, Finite-dimensional approximation of nonlinear problems. Part I : Branches of nonsingular solutions, Numer. Math., 36, pp.1-25. Zbl0488.65021 MR595803 · Zbl 0488.65021
[4] J.-R. CHABARD, 1989, N3S Code for Fluid Mechanics - Release 2.0, Electricité de France Report HE41/89.14, Chatou.
[5] M. CROUZEIX, J. RAPPAZ, 1990, On Numerical Approximation in Bifurcation Theory, Recherches en Mathématiques Appliquées, 13, Masson, Springer-Verlag, Paris, Berlin. Zbl0687.65057 MR1069945 · Zbl 0687.65057
[6] M. GAULTIER, M. LEZAUN, 1989, Equations de Navier-Stokes couplées à des équations de la chaleur : résolution par une méthode de point fixe en dimension infinie, Ann. Sc. Math. Québec, 13, pp.1-17. Zbl0716.35064 MR1006500 · Zbl 0716.35064
[7] V. GlRAULT, P.-A. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, Berlin, Heidelberg, New-York. Zbl0585.65077 MR540128 · Zbl 0585.65077
[8] D. D. JOSEPH, 1965, On the stability of the Boussinesq equations, Arch. National Mech. Anal, 20, pp. 59-71. Zbl0136.23402 MR182243 · Zbl 0136.23402
[9] P. H. RABINOWITZ, 1968, Existence and nonuniqueness of rectangular solutions of the Bénard problem, Arch. Rational Mech. Anal, 29, pp. 32-57. Zbl0164.28704 MR233557 · Zbl 0164.28704
[10] D. H. SATTINGER, 1978, Group Theoretic Methods in Bifurcation Theory, Lecture Notes in Math., 762, Springer-Verlag, Berlin, Heidelberg, New-York. Zbl0414.58013 MR551626 · Zbl 0414.58013
[11] E. A. SPIEGEL, G. VERONIS, 1980, On the Boussinesq approximation for a compressible fluid, Astrophys. Journal, 131, pp. 442-447. MR128767
[12] W. VELTE, 1964, Stabilitätsverhalten und Verzweigung stationirer Lösungen der Navier-Stokesschen Gleichungen, Arch, Rational Mech. Anal, 16, pp. 97-125. Zbl0131.41808 MR182240 · Zbl 0131.41808
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.