Contou-Carrère, Carlos Local jacobian, universal Witt bivector group and the tame symbol. (Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré.) (French) Zbl 0840.14031 C. R. Acad. Sci., Paris, Sér. I 318, No. 8, 743-746 (1994). Summary: Let \(S= \text{Spec} (A)\) be a noetherian affine scheme, \({\mathcal X}\to S\) and \(S\)-formal curve isomorphic to \(\text{Spf} ({\mathcal O}_S [[T]])\), and \({\mathcal U}= \text{Spec} (A[[T]][T^{-1}])\). Let \(G\) be any commutative, smooth and separated \(S\)-group scheme. We construct an \(S\)-group extension \({\mathcal F}\) of the completion \(\check W\), of the universal \(S\)-Witt vector group \(W\), by the group of units \({\mathcal O}_S [[T]]^*\), we associate an \(S\)-functor \({\mathcal F}_{\text{omb}}\) to \({\mathcal F}\), we define an Abel-Jacobi morphism \(f: {\mathcal U}\to {\mathcal F}_{\text{omb}}\), which sets up an isomorphism \[ \operatorname{Hom}_{S\text{-gr}} ({\mathcal F},G) \overset\sim \rightarrow G({\mathcal U}). \tag \(*\) \] We define an \(S\)-bihomomorphism \({\mathcal F}\times {\mathcal F}\to \underline {\mathbb{G}}_{mS}\), identifying \({\mathcal F}\) to its own dual group, and inducing the isomorphism \((*)\) if \(G= \underline {\mathbb{G}}_{mS}\). Cited in 7 ReviewsCited in 23 Documents MSC: 14L05 Formal groups, \(p\)-divisible groups 14L15 Group schemes 14G20 Local ground fields in algebraic geometry 13K05 Witt vectors and related rings (MSC2000) Keywords:formal curve; Witt vector group; group scheme PDF BibTeX XML Cite \textit{C. Contou-Carrère}, C. R. Acad. Sci., Paris, Sér. I 318, No. 8, 743--746 (1994; Zbl 0840.14031)