Kowalski, Zbigniew S. Minimal generators for aperiodic endomorphisms. (English) Zbl 0840.28006 Commentat. Math. Univ. Carol. 36, No. 4, 721-725 (1995). Summary: Every aperiodic endomorphism \(f\) of a nonatomic Lebesgue space which possesses a finite 1-sided generator has a 1-sided generator \(\beta\) such that \(k_f\leq \text{card } \beta\leq k_f+ 1\). This is the best estimate for the minimal cardinality of a 1-sided generator. The above result is the generalization of the analogous one for ergodic case. Cited in 1 Document MSC: 28D05 Measure-preserving transformations Keywords:aperiodic endomorphism; one-sided generator PDF BibTeX XML Cite \textit{Z. S. Kowalski}, Commentat. Math. Univ. Carol. 36, No. 4, 721--725 (1995; Zbl 0840.28006) Full Text: EuDML