Young measure-valued solutions for non-Newtonian incompressible fluids. (English) Zbl 0840.35079

This paper deals with the problem of a nonlinear bipolar fluid, in which the higher-order viscosity vanishes, and the viscous part of the stress tensor satisfies a growth condition of the form \[ |\tau_{ij}|\leq C(1+ |e|)^{p- 1},\quad C> 0, \] \(e\) the rate of strain tensor. The authors give some existence results of Young-measure valued solutions, which under certain limitations on \(p\) depending on the space dimensions are also weak solutions. Uniqueness is also guaranteed for higher values of \(p\).
Reviewer: F.Rosso (Firenze)


35Q35 PDEs in connection with fluid mechanics
35D05 Existence of generalized solutions of PDE (MSC2000)
76A05 Non-Newtonian fluids
Full Text: DOI


[1] Ball, J.M. ”A Version of the Fundamental Theorem for Young Measures”. preprint · Zbl 0991.49500
[2] Bellout, H. and Bloom, F. ”Steady Plane Poiseuille Flows of Incompressible Multipolar Fluids”. submitted for publication · Zbl 0791.76002
[3] Bellout H., Quarterly of Applied Mathemetics
[4] Bellout, H., Bloom, F. and Nečas, J. ”Bounds for the Dimensions of the Attractors of Nonlinear Bipolar Viscous Fluids”. submitted for publication · Zbl 0861.35072
[5] Bellout, H., Bloom, F. and Nečas, J. ”Existence, Uniqueness, and Stability of Solutions to the Initial Boundary Value Problem for Bipolar Viscous Fluids”. submitted for publication · Zbl 0831.35135
[6] DOI: 10.1016/0020-7225(67)90041-9 · Zbl 0145.46305
[7] DOI: 10.1090/S0002-9947-1985-0808729-4
[8] DiPerna R., Oscillation Theory, Computation, and Methods of Compensated Compactness 2 (1986)
[9] DOI: 10.1007/BF01214424 · Zbl 0626.35059
[10] DOI: 10.1002/cpa.3160400304 · Zbl 0850.76730
[11] DOI: 10.1016/0022-247X(91)90024-T · Zbl 0712.76039
[12] Edwards R.E., Functional Analysis (1965) · Zbl 0182.16101
[13] Kaniel S., J. Math. and Mech 19 pp 681– (1970)
[14] Ladyzhenskaya O., The Mathematical Theory of Viscous Incompressible Flow (1965) · Zbl 0184.52603
[15] Ladyzhenskaya O., Value Problems of Mathematical Physics V (1970) · Zbl 0192.44604
[16] Leráy J., Étude de diverses equations integrates non linéaires et de quelques problémes que pose I’Hydrodynamique 12 pp 1– (1933)
[17] Lions J.L., Quelques Méthodes de Resolution des Problémes aux Limites non Linéaires (1969)
[18] Murat, F. 1979. ”Compacité par Compensation II”. Edited by: Giorgi, De, Magenes and Mosco. Bologna, Italy: Pitagora Editrice. · Zbl 0427.35008
[19] Murat F., Annali Scuola Norm. Sup 5 pp 485– (1978)
[20] Malek, J., Nečas, J. and Novotny, A. ”Measure-Valued Solutions and Asymptotic Behavior of a Multipolar Model of a Boundary Layer”. preprint
[21] Murat F., Recent Methods in Nonlinear Analysis (1979)
[22] Murat F., Annali Scuola Norm. Sup. Pisa 5 pp 485– (1978)
[23] DOI: 10.1016/0022-247X(91)90189-7 · Zbl 0757.35060
[24] Nečas J., Quarterly of Applied Mathematics (2) pp 247– (1991) · Zbl 0732.76003
[25] Nečas J., Proceedings of the 2nd International Conference on Finite Element Methods (1990)
[26] Nečas J., Equations aux Derivees Partielles (1965)
[27] DOI: 10.1007/978-3-642-61623-5 · Zbl 0585.65077
[28] Serre D., J. Math Pure et Appl 65 pp 423– (1987)
[29] Serre D., J. Diff. Eqs. 67 (1987)
[30] Tartar L., Nonlinear P.D.E. and Their Applications: College de France Seminar (1983)
[31] Tartar L., in Systems of Nonlinear P.D.E. pp 263–
[32] L. Tartar Cours Pecco t, Collgeéde France (1977)
[33] DOI: 10.1007/BF00253050 · Zbl 0131.22001
[34] H. Triebel, ”Interpolation Theory, Function Spaces, Differential Operators” North-Holland, 1978
[35] L.C. Young Lectures on the Calculus of Variations and Optimal Control Theory , Saunders, (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.