zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational inequalities for monotone operators in nonreflexive Banach spaces. (English) Zbl 0840.47052
Summary: The purpose of this paper is to study the existence problem of solutions and perturbation problem for some kind of variational inequalities with monotone operators in nonreflexive Banach spaces, and to obtain some results.

MSC:
47J20Inequalities involving nonlinear operators
WorldCat.org
Full Text: DOI
References:
[1] Brezis, H.: Proc. nat. Institute. (1968)
[2] Browder, F. E.: Nonlinear elliptic boundary value problems. Trans. amer. Math. soc. 117, 530-550 (1965) · Zbl 0127.31903
[3] Dafermos, S.: Sensitivity analysis in variational inequalities. Math. opera. Research 13, No. 3, 421-434 (1988) · Zbl 0674.49007
[4] Debrunner, H.; Flor, P.: Ein erweiterungssatz für monotone mogen. Archiv. math 15, 445-447 (1964) · Zbl 0129.09203
[5] Gossez, J. P.: Operateurs monotones nonlineaires dans LES espaces de Banach nonreflexifs. J. math. Anal. appl. 34, 371-395 (1971) · Zbl 0228.47040
[6] Guo, J. S.; Yao, J. C.: Variational inequalities with nonmonotone operators. J. optimization theory and appl. 80, No. 1, 63-74 (1994) · Zbl 0798.49013
[7] Hartman, P.; Stampacchia, G.: On some nonlinear elliptic differential functional equations. Acta math. 115, 271-310 (1966) · Zbl 0142.38102
[8] Kinderlehrer, D.; Stampacchia, G.: An introduction to variational inequalities and their applications. (1980) · Zbl 0457.35001
[9] Minty, G. J.: On the generalization of a direct method of the calculus of variations. Bull. amer. Math. soc., No. 73, 315-321 (1967) · Zbl 0157.19103
[10] Minty, G. J.: On the extension of Lipschitz-holder continuous and monotone functions. Bull. amer. Math. soc. 76, 224-239 (1970) · Zbl 0191.34603
[11] Pascali, D.; Sburlan, S.: Nonlinear mappings of monotone type. (1978) · Zbl 0423.47021
[12] Kachurovski, R. J.: On monotone operators and convex functionals. Uspehi mat. Nauk, SSSR, No. 15, 213-215 (1960)
[13] Rudin, W.: Functional analysis. (1973) · Zbl 0253.46001
[14] Zarentonello, E. H.: Solving functional equations by contractive averaging. Math. research center report 160 (1960)