Jankovský, Zdeněk Laguerre’s differential geometry and kinematics. (Laguerresche Differentialgeometrie und Kinematik.) (German) Zbl 0840.53013 Math. Bohem. 120, No. 1, 29-40 (1995). The author studies differential geometric properties of curves in the sense of plane Laguerre geometry over dual numbers. He gives formulas to determine the “\(L\)-curve arc” and the “\(L\)-curvature”. Then he considers \(L\)-minimal curves and \(L\)-osculating circles. All is done in analogy to the case of Laguerre geometry over complex numbers. Reviewer: Otto Röschel (Graz) MSC: 53A35 Non-Euclidean differential geometry 51B15 Laguerre geometries Keywords:Laguerre geometry in the isotropic plane; differential geometric properties of curves PDF BibTeX XML Cite \textit{Z. Jankovský}, Math. Bohem. 120, No. 1, 29--40 (1995; Zbl 0840.53013) Full Text: EuDML EMIS