The generalized covariation process and Itô formula. (English) Zbl 0840.60052

The authors define the covariation process \([X,Y]\) associated with certain real-valued stochastic processes \(X\) and \(Y\), using a limit procedure. This covariation process is made explicit in some examples, including the special case when \(X\) and \(Y\) are given in the form of a Skorokhod integral. Following an earlier work of H. Föllmer [in: Séminaire de probabilités XV. Lect. Notes Math. 850, 143-150 (1981; Zbl 0461.60074)], an extension of Itô’s formula is proven.
Reviewer: J.Bertoin (Paris)


60H05 Stochastic integrals


Zbl 0461.60074
Full Text: DOI


[1] Asch, J.; Potthoff, J., Ito lemma without non-anticipatory conditions, Probab. Theory Related Fields 88, 17-46 (1991) · Zbl 0695.60054
[2] Barlow, M.; Yor, M., Semi-martingale inequalities via Garsia-Rodemich-Rumsey lemma, Application to local times. Application to local times, J. Funct. Anal., 49 (1982) · Zbl 0505.60054
[3] Bertoin, J., Les processus de Dirichlet en tant qu’espaces de Banach, Stochastics, 18, 155-168 (1986) · Zbl 0602.60069
[4] Duc, N. M.; Nualart, D., Stochastic processes possessing a Skorohod integral representation, Stochastics, 30, 47-60 (1990) · Zbl 0706.60055
[5] Duc, N. M.; Nualart, D.; Sanz, M., The Doob-Meyer decomposition for anticipating processes, Stochastics, 34, 221-239 (1991) · Zbl 0723.60049
[6] Föllmer, H., Calcul d’Itô sans Probabilités, (Séminaire de Probabilités XV 1979/80. Séminaire de Probabilités XV 1979/80, Lecture Notes in Math, Vol. 850 (1979/1980), Springer: Springer Berlin), 143-150 · Zbl 0461.60074
[7] Grorud, A., Un crochet non symétrique en calcul stochastique anticipatif. Stochastic Analysis and related topics II, (Korezlioglu, H.; Ustunel, A. S., Proc. Silivi 1988. Proc. Silivi 1988, Lecture Notes in Maths., Vol. 1444 (1988), Springer: Springer Berlin), 183-192
[8] Jacod, J., Calcul stochastique et problèmes de martingales, (Lectures Notes in Maths, 714 (1979), Springer: Springer Berlin) · Zbl 0414.60053
[9] Kunita, H., Stochastic differential equations and stochastic flow of diffeomorphisms, (Ecole d’Eté de Saint Flour XII. Ecole d’Eté de Saint Flour XII, Lectures Notes in Maths., Vol. 1097 (1982), Springer: Springer Berlin), 144-303
[10] Nualart, D., Non causal stochastic integrals and calculus. Stochastic analysis and related topics, (Korezlioglu, H.; Ustunel, A. S., Proceedings Silivri 1986. Proceedings Silivri 1986, Lectures Notes in Maths., Vol. 1316 (1986), Springer: Springer Berlin), 80-129
[11] Nualart, D.; Pardoux, E., Stochastic calculus with anticipating integrands, Probab. Theory Related Fields, 78, 535-581 (1988) · Zbl 0629.60061
[12] Protter, P., Stochastic Integration and Differential Equations (1990), Springer: Springer Berlin
[13] Russo, F.; Vallois, P., Forward, backward and symmetric stochastic integration, Probab. Theory Related Fields, 97, 403-421 (1993) · Zbl 0792.60046
[14] Russo, F.; Vallois, P., Non-caucal stochastic integration for làd làg processes, (Lindstrom, T.; Oksendal, B.; Ustunel, A. S., Proc. Oslo-Silivri Conf.. Proc. Oslo-Silivri Conf., 1992 (1993), Gordon and Breach: Gordon and Breach London) · Zbl 0829.60046
[15] Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion (1991), Springer: Springer Berlin · Zbl 0731.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.