zbMATH — the first resource for mathematics

Aggregation and intermediate phases in dilute spin systems. (English) Zbl 0840.60094
Summary: We study a variety of dilute annealed lattice spin systems. For site diluted problems with many internal spin states, we uncover a new phase characterized by the occupation and vacancy of staggered sublattices. In cases where the uniform system has a low temperature phase, the staggered states represent an intermediate phase. Furthermore, in many of these cases, we show that (at least part of) the phase boundary separating the low-temperature and staggered phases is a line of phase coexistence – i.e. the transition is first order. We also study the phenomenon of aggregation (phase separation) in bond diluted models. Such transitions are known, trivially, to occur in the large-\(q\) Potts models. However, it turns out that phase separation is typical in bond diluted spin systems with many internal states. (In particular, a bond aggregation transition is not tied to a discontinuous transition in the uniform system.) Along the portions of the phase boundary where any of these phenomena occur, the prospects for a Fisher renormalization effect are deemed to be highly unlikely or are ruled out altogether.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
58Z05 Applications of global analysis to the sciences
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
Full Text: DOI
[1] [CKS] Chayes, L., Kotecký, R., Shlosman, S.B: Research in Progress.
[2] [D] Dobrushin, R.L.: Problem of Uniqueness of a Gibbs Random Field and Phase Transitions. Funkts. Anal. Prilozh2, 44–57 (1968)
[3] [DS] Dobrushin, R.L., Shlosman, S.B.: Completely Analytical Gibbs Fields. Statistical Physics and Dynamical Systems, Progress in Physics, v.10, Edited by Jaffe, A., Fritz, J., Szasz, D., Boston, Basel, Stuttgart, Birkhäuser, 1985 · Zbl 0569.46043
[4] [EG] Essam, J.W., Garelick, H.: Critical Behavior of a Soluble Model of Dilute Ferromagnetism. Proc. Phys. Soc.92, 136–149 (1967) · doi:10.1088/0370-1328/92/1/320
[5] [F] Fisher, M.E.: Renormalization of Critical Exponents by Hidden Variables. Phys. Rev.176, 257–272 (1968) · doi:10.1103/PhysRev.176.257
[6] [FL] Fröhlich, J., Lieb, E.H.: Phase Transitions in Anisotropic Lattice Spin Systems. Commun. Math. Phys.60, 233–267 (1978) · doi:10.1007/BF01612891
[7] [FILS I] Fröhlich, J., Israel, R., Lieb, E.H., Simon, B.: Phase Transitions and Reflection Positivity. I. Commun. Math. Phys.62, 1–34 (1978) · doi:10.1007/BF01940327
[8] [FILS III] Fröhlich, J., Israel, R., Lieb, E.H., Simon, B.: Phase Transitions and Reflection Positivity. III. In preparation
[9] [FSS] Fröhlich, J., Simon, B., Spencer, T.: Infra-red Bounds, Phase Transitions and Continuous Symmetry Breaking. Commun. Math. Phys.50, 79–95 (1976) · doi:10.1007/BF01608557
[10] [FSS] Hoston, W., Berker, A.N.: Dimensionality Effects on the Multicritical Phase Diagrams of the Blume-Emery-Griffiths Model with Repulsive Biquadratic Couplings: Mean-field and Renormalization Group Studies. J. Appl. Phys.70, 6101–6103 (1991) · doi:10.1063/1.350059
[11] [KS] Kotecký, R., Shlosman, S.B.: First-Order Phase Transitions in Large Entropy Lattice Models. Commun. Math. Phys.83, 493–515 (1982) · doi:10.1007/BF01208713
[12] [M] Martirosian, D.H.: Translation Invariant Gibbs States inq-state Potts Model. Commun. Math. Phys.105, 281–290 (1986) · doi:10.1007/BF01211103
[13] [MS] Minlos, R.A., Sinai, Y.A.: The Phenomenon of ”Phase Separation” at Low Temperature in Some Lattice Gas Models I. Mat. Sb. Phys.73, 375–488 (1967)
[14] [NBRS] Nienhuis, B., Berker, A.N., Riedel, E.K., Schick, M.: First- and Second-Order Phase Transitions in Potts Models Renormalization-Group Solution. Phys. Rev. Lett.43, 737–740 (1979) · doi:10.1103/PhysRevLett.43.737
[15] [RL] Runels, L.K., Lebowitz, J.L.: Phase Transitions of a Multicomponent Widom-Rowlinson Model. J. Math. Phys.15, 1712–1717 (1974) · doi:10.1063/1.1666530
[16] [S] Shlosman, S.B.: The Method of Reflection Positivity in the Mathematical Theory of First-Order Phase Transitions. Russ. Math. Surv.41:3, 83–134 (1986) · doi:10.1070/RM1986v041n03ABEH003322
[17] [S] Stinchcombe, R.B.: Dilute Magnetism. Phase Transitions and Critical Phenomena Vol. 7, Edited by Domb, C., Lebowitz, J.L., London: Academic Press Inc., 1983
[18] [SW] Sarbach, S., Wu, F.Y.: Z Phys. B44, 309 (1981) · doi:10.1007/BF01294168
[19] [SM] Syozi, I., Miyazima, S.: Prog. Theor. Phys.36, 1803 (1966) · doi:10.1143/PTP.36.1083
[20] [ST] Southern, B.W., Thorpe, M.F.: J. Phys. C12, 5351 (1979) · doi:10.1088/0022-3719/12/24/007
[21] [Z] Zahradnik, M.: An Alternate Version of Pirogov-Sinai Theory. Commun. Math. Phys.93, 559–581 (1984) · doi:10.1007/BF01212295
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.