Frozen orbits for satellites close to an Earth-like planet. (English) Zbl 0840.70020

This paper concerns the satellite motion around a planet with a dominant second order zonal harmonic, and all other perturbations are excluded. A Lie transformation is used to average over the mean anomaly to second order. The Hamiltonian is developed as a Fourier series in the argument of perigee with coefficients as algebraic functions of eccentricity. Frozen orbits are located by solving the equilibria equations by analytical and numerical means. The analytical solutions are provided in full. The manner in which the odd zonal J3 breaks the discrete symmetry is illustrated by color diagrams of the phase space
Three families of frozen orbits in the full zonal problem are discovered and also illustrated by color phase space diagrams. These families are: 1) stable equilibria from the equatorial plane to the critical inclination, 2) an unstable family from the bifurcation at the critical inclination, and 3) a stable family from that bifurcation and terminating with a polar orbit. Except for orbits near the critical inclination, the stable orbits have small eccentricities and are well suited for survey missions.
The paper is very analytical and includes the Hamiltonian in Delaunay variables and spherical coordinates. The color phase space diagrams add to the clarity.
Reviewer: P.K.Seidelmann


70M20 Orbital mechanics
70F15 Celestial mechanics
Full Text: DOI


[1] Brouwer, D.: 1959, ?Solution of the problem of artificial satellite theory without drag,?Astronomical Journal 64, 378-397. · doi:10.1086/107958
[2] Broucke, R. A.: 1993, ?Numerical integration of periodic orbits in the main problem of artificial satellite theory,? submitted toCelestial Mechanics.
[3] Coffey, S., and Deprit, A.: 1982 ?Third order solution for artificial satellites,?Journal of Guidance, Control and Dynamics 5, 366-371. · Zbl 0508.70010 · doi:10.2514/3.56183
[4] Coffey, S., Deprit, A., Deprit, E., and Healy, L.: 1990, ?Painting the phase space portrait of an integrable dynamical system,?Science 247, 769-892. · Zbl 1226.37053 · doi:10.1126/science.247.4944.833
[5] Coffey, S., Deprit A., and Miller, B.R.: 1986, ?The critical inclination in artificial satellite theory,?Celestial Mechanics 39, 365-406. · Zbl 0645.70018 · doi:10.1007/BF01230483
[6] Cutting, E., Born, G. H., Frautnick, J. C., McLaughlin, W. L., Neilson, R. A., and Thielen, J. A.: 1977, ?Mission design for Seasat-A, an oceanographic satellite,? AIAA Paper no 77-31.
[7] Cutting, E., Born, G. H., and Frautnick, J. C.: 1978, ?Orbit analysis for Seasat-A,?J. of the Astronautical Sciences 26, 315-342.
[8] Dasenbrock, R.: 1982, ?A Fortran based program for computerized algebraic manipulation?, NRL Report no 8611.
[9] Deprit, A.: 1969, ?Canonical transformations depending on a small parameter,?Celestial Mechanics 1, 12-30. · Zbl 0172.26002 · doi:10.1007/BF01230629
[10] Deprit, A.: 1981, ?The Elimination of the Parallax in Satellite Theory,?Celestial Mechanics 24, 111-153. · Zbl 0492.70024 · doi:10.1007/BF01229192
[11] Deprit, A. and Palacián, J.: 1993, ?The Relegation Algorithm,? to be submitted for publication inCelestial Mechanics & Dynamical Astronomy.
[12] Geddes, K. O., Czapor, S. R. and Labahn, G.: 1992,Algorithms for Computer Algebra, Kluwer Academic Publishers, Boston/Dordrecht/London. · Zbl 0805.68072
[13] Healy, L., and Deprit, E.: 1991, ?Paint by number: uncovering phase flows of an integrable dynamical system,?Computers in Physics Sep-Oct, 491-496.
[14] Kaula, W. M.: 1966,Theory of satellite geodesy, Balisdell Publ. Co., Waltham, MA. · Zbl 0973.86001
[15] Kozai, Y.: 1962, ?Second order solution of artificial satellite theory without air drag,?Astronomical Journal,67.
[16] Kozai, Y.: 1963, ?Motion of a lunar orbiter,?Publications of the Astronomical Society of Japan,15.
[17] McClain, W.D.: 1987, ?Eccentricity control and the frozen orbit concept for the Navy Remote Ocean Sensing System (NROSS) Mission,? AAS/AIAA Astrodynamics Conference in Kalispell, MT/August 10-13, AAS Paper no 87-516, 21 pp.
[18] Nickerson, K. G., Herder, R. W., Glass, A. B., and Cooley, J. L.: 1978, ?Application of altitude control techniques for low altitude Earth satellites,?J. of the Astronautical Sciences 26, 129-148.
[19] Orlov, A. A.: 1953, ?Pochti krugovye periodicheskie dvizheniya material’noi tochki pod deistviem nyutonovskogo prityazheniya sferoida,?Soobshcheniya Gosudarstvennogo Astronomicheskogo Instituta imeni P.K. Shternberga No.88-89, 3-38.NRL Translation No.519, 1955, by A. Pingell.
[20] Orlov, A. A.: 1954, ?O pochti periodicheskie dvizheniya material’noi tochki v pole tyagotenia sferoida,?Trudy Gosudarstvennogo Astronomicheskogo Instituta imeni P.K. Shternberga 24, 139-153, Moscow University Press.
[21] Palacián, J.: 1992, ?Teoría del satélite artificial: Armónicos tesserales y su relegación mediante simplificaciones algebraicas,?Doctoral dissertation, University of Zaragoza (Spain).
[22] Putney, B. H., Nerem, R. S., Lerch, F. J., Pavlis, E. C., Klosko, S. M., Williamson, R. G., and Patel, G. B.: 1991, ?Earth gravity model development at NASA/GSFC: Preliminary results from GEM-T3 and GEM-TS3,?EOS Transactions American Geophysical Union72, 89.
[23] Rom, A.: 1969, ?Mechanized Algebraic Operations (MAO),?Celestial Mechanics 1, 301-319. · Zbl 0193.15203 · doi:10.1007/BF01231135
[24] Rosborough, G. W.: 1991, ?Influence of higher degree zonals on the frozen orbit geometry,? AAS/AIAA Astrodynamics Specialist Conference in Durango, CO/August 19-22, AAS Paper no 91-428, 14 pp.
[25] Smith, D.E., Lerch, F.J., Nerem, R.S., Zuber, M.T., Patel, G.B., Fricke, S.K., Lemoine, F.G.: 1993, ?An improved gravity model for Mars: Goddard Mars model-1 (GMM-1),? Accepted for publication in theJournal of Geophysical Research.
[26] Uphoff, C.: 1976a, ?Frozen polar lunar orbits,? JPL Interoffice Memo no 312/76.3-2, available upon request from the author.
[27] Uphoff, C.: 1976, ?Stabilizing influence of Earth perturbations on polar lunar orbiters,? AAS/AIAA Astrodynamics Conference in San Diego, CA/August 10-13, AAS Paper no 76-843, 6 pp.
[28] Uphoff, C.: 1985, ?Identification of frozen orbits without integration,? JPL Interoffice Memo no 311/85.2-942, available upon request from the author.
[29] Uphoff, C, and Roberts, P. H,; 1978, ?Orbit design concepts for Venus orbiters,? AAS/AIAA Astrodynamics Conference in Palo Alto, CA/ August 7-9, AAS Paper no 78-1437, 13 pp.
[30] Vinti, J. P.: 1959, ?Theory of an accurate intermediary orbit for satellite astronomy,?Journal of the National Bureau of Standards,65B, 169-201. · Zbl 0148.44701
[31] Vinti, J. P.: 1963, ?Zonal harmonic perturbations of an accurate reference orbit of an artificial satellite,?Journal of the National Bureau of Standards 67B, 191-222. · Zbl 0123.40303
[32] Wackernagel, H. B. and Snow, D. E.: 1987, ?A comparison of the WGS 84 and the GEM-L2 geopotential models,? HQ Air Force Space Command Technical Note no 87-10, Peterson Air Force Base, CO.
[33] Wells, W. R.: 1965, ?Analytical lifetime studies of a close lunar satellite,? NASA Langley Technical Note D-2805.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.