On the \(p\)-adic height of Heegner cycles. (English) Zbl 0841.11025

B. Gross and D. Zagier [Invent. Math. 84, 225-320 (1986; Zbl 0608.14019)] proved a formula which relates the first derivative of the \(L\)-function of a modular form \(f\) of weight 2 on \(\Gamma_0 (N)\) and the Néron-Tate height of a Heegner point on the \(f\)-part of the Jacobian \({\mathcal J}_0 (N)\). A \(p\)-adic version of this formula was later found by B. Perrin-Riou [Invent. Math. 89, 455-510 (1987; Zbl 0645.14010)].
Now let \(f\) be a modular form of even weight \(2r> 2\). The author proves, under suitable hypotheses, a \(p\)-adic version of the Gross and Zagier formula in this context (Theorem A): the first derivative of a \(p\)-adic \(L\)-function at the central point is related to the \(p\)-adic height of a Heegner cycle. The proof of Theorem A closely follows Perrin-Riou’s article. Some arguments are however different, mainly because an archimedean analogue of the Gross and Zagier formula for higher weight modular forms is still lacking. Ideas of J.-L. Brylinski’s article [Duke Math. J. 59, 1-26 (1989; Zbl 0702.14016)] are of great importance here. The author uses Theorem A and his own generalization of Kolyvagin’s method of Euler systems to modular forms of even weight to obtain a (weak) form of the conjecture of Beilinson and Bloch in this situation (Theorem B).


11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
Full Text: DOI EuDML


[1] Atkin, A.O.L., Lehner, J.: Hecke operators on{\(\Gamma\)} 0(m), Math. Ann.185, 134–160 (1970) · Zbl 0185.15502
[2] Atkin, A.O.L., Li, W.: Twists of Newforms and Pseudo-Eigenvalues ofW-Operators, Invent. Math.48, 221–243 (1978) · Zbl 0377.10017
[3] Beilinson, A.A.: Height pairing between algebraic cycles, in:K-theory, Arithmetic and Geometry; Seminar, Moscow 1984–86 (Manin, Yu.I., ed.), Lect. Notes in Math.1289, Springer, Berlin, Heidelberg, New York, 1987, pp. 1–26
[4] Berthelot, P.: Remarks on Faltings’ approach to theC cris conjecture, preprint Rennes, June 21, 1994
[5] Bloch, S., Kato, K.:L-functions and Tamagawa numbers of motives, in: The Grothendieck Festschrift I. Progress in Mathematics86, Birkhäuser, Boston, Basel, Berlin, 1990, pp. 333–400 · Zbl 0768.14001
[6] Brylinski, J.-L.: Heights for local systems on curves, Duke Math. J.59, 1–26 (1989) · Zbl 0702.14016
[7] Bump, D., Friedberg, S., Hoffstein, J.: Nonvanishing theorems forL-functions of modular forms and their derivatives, Invent. Math.102, 543–618 (1990) · Zbl 0721.11023
[8] Carayol, H.: Sur les représentationsl-adiques, attachées aux formes modulaires de Hilbert, Ann. Sci. Ec. Norm. Supér.19, 409–469 (1986) · Zbl 0616.10025
[9] Deligne, P.: Formes modulaires et représentations -adiques, in: Séminaire Bourbaki, No 355, Lect. Notes in Math,179, Springer, Berlin, Heidelberg, New York, 1971, pp. 139–172
[10] Deligne, P.: La conjecture de Weil II, Publ. Math. de l’I.H.E.S.52, 137–252 (1980)
[11] Faltings, G.: Crystalline cohomology andp-adic Galois representations, in: Algebraic Analysis, Geometry, and Number Theory (Igusa, J.-I., ed.), John Hopkins University Press, Baltimore, 1990, pp. 25–79
[12] Fontaine, J.-M., Messing, W.:p-adic periods andp-adic étale cohomology, in: Current Trends in Arithmetic Algebraic Geometry. Contemporary Mathematics67, American Mathematical Society, Providence, Rhode Island, 1987, pp. 179–207
[13] Fontaine, J.-M., Perrin-Riou, B.: Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L, in: Motives, Proceedings of AMS Summer Research Conference held in July 1991, Seattle, Proceedings of Symposia in Pure Mathematics55/I, American Mathematical Society, Providence, Rhode Island, 1994, pp. 599–706 · Zbl 0821.14013
[14] Greenberg, R.: Iwasawa Theory forp-adic Representations, in: Algebraic Number Theory, in honor of K. Iwasawa, Advanced Studies in Pure Mathematics, Academic Press, Boston, 1989, pp. 97–137
[15] Gros, M.: Régulateurs syntomiques et valeurs de fonctionsL p-adiques I, Invent. Math.99, 293–320 (1990) · Zbl 0667.14006
[16] Gross, B.H.: Heegner points onX 0(N), in: Modular Forms (Rankin, R.A., ed.), Ellis Horwood, Chichester, 1984, pp. 87–106
[17] Gross, B.H., Zagier, D.B.: Heegner points and derivatives ofL-series, Invent. Math.84, 225–320 (1986) · Zbl 0608.14019
[18] Gross, B.H., Kohnen, W., Zagier, D.B.: Heegner points and derivatives ofL-series II, Math. Ann.278, 497–562 (1987) · Zbl 0641.14013
[19] Hatcher, R.L.: Heights andL-series, Canad. J. Math.XLII, 533–560 (1990) · Zbl 0723.11024
[20] Hida, H.: Ap-adic measure attached to the zeta functions associated with two elliptic modular forms. I, Invent. Math.79, 159–195 (1985) · Zbl 0573.10020
[21] Hida, H.: Ap-adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier38, 1–83 (1988) · Zbl 0645.10028
[22] Iwaniec, H.: On the order of vanishing of modularL-functions at the critical point, Séminaire de Théorie des Nombres, Bordeaux2, 365–376 (1990) · Zbl 0719.11029
[23] Jannsen, U.: Continuous Étale Cohomology, Math. Ann.280, 207–245 (1988) · Zbl 0649.14011
[24] Jannsen, U.: Mixed Motives and AlgebraicK-Theory, Lect. Notes in Math.1400, Springer, Berlin, Heidelberg, New York, 1990 · Zbl 0691.14001
[25] Kato, K., Messing, W.: syntomic cohomology andp-adic étale cohomology, Tôhoku Math. J.44, 1–9 (1992) · Zbl 0792.14008
[26] Katz, N., Mazur, B.: Arithmetic moduli of elliptic curves, Ann. of Math. Studies108, Princeton Univ. Press, Princeton, 1985 · Zbl 0576.14026
[27] Katz, N., Messing, W.: Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math.,23, 73–77 (1974) · Zbl 0275.14011
[28] Kolyvagin, V.A.: Euler systems, in: The Grothendieck Festschrift II, Progress in Mathematics87, Birkhäuser, Boston, Basel, Berlin, 1990, pp. 435–483 · Zbl 0742.14017
[29] Lingen, J. van der: Intersection of Heegner divisors onX 0(N), Minor Thesis, Amsterdam University
[30] Mazur, B., Tate, J., Teitelbaum, J.: Onp-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math.84, 1–48 (1986) · Zbl 0699.14028
[31] Murty, V.K., Murty, M.R.: Mean values of derivatives of modularL-series, Ann. of Math.133, 447–475 (1991) · Zbl 0745.11032
[32] Nekovář, J.: Kolyvagin’s method for Chow groups of Kuga-Sato varieties, Invent. Math.107, 99–125 (1992) · Zbl 0741.14002
[33] Nekovář, J.: Onp-adic height pairings, in: Séminaire de théorie des nombres de Paris 1990/91, Progress in Math.108, (David, S., ed.), Birkhäuser, Boston, 1993, pp. 127–202
[34] Nekovář, J.: Syntomic cohomology andp-adic regulators, in preparation
[35] Perrin-Riou, B.: FonctionsL p-adiques associées à une forme modulaire et à un corps quadratique imaginaire, J. London Math. Soc.38, 1–32 (1988) · Zbl 0656.10019
[36] Perrin-Riou, B.: Points de Heegner et dérivées de fonctionsL p-adiques, Invent. Math.89, 455–510 (1987) · Zbl 0645.14010
[37] Perrin-Riou, B: Théorie d’Iwasawa et hauteursp-adiques, Invent. Math.109 (1992), 137–185 · Zbl 0781.14013
[38] Scholl, A.J.: Motives for modular forms, Invent. Math.100, 419–430 (1990) · Zbl 0760.14002
[39] Scholl, A.J.: Height pairings and values ofL-functions, in: Motives, Proceedings of AMS Summer Research Conference held in July 1991, Seattle, Proceedings of Symposia in Pure Mathematics55/I, American Mathematical Society, Providence, Rhode Island, 1994, pp. 571–598
[40] Schoen, C.: Complex multiplication cycles and a conjecture of Beilinson and Bloch, Trans. A.M.S.339 (1993), 87–115 · Zbl 0811.14003
[41] Schneider, P.:p-adic height pairings I, Invent. Math.69, 401–409 (1982) · Zbl 0509.14048
[42] Schneider, P.:p-adic height pairings II, Invent. Math.79, 329–374 (1985) · Zbl 0571.14021
[43] Serre, J.-P.: Cohomologie Galoisienne, Lect. Notes in Math.5, Springer, Berlin, Göttingen, Heidelberg, New York, 1964 · Zbl 0143.05901
[44] Serre, J.-P., Tate, J.: Good reduction of abelian varieties, Ann. of Math.88, 492–517 (1968) · Zbl 0172.46101
[45] Shimura, G.: The Special Values of the Zeta Functions Associated with Cusp Forms, Comm. Pure Appl. Math.39, 783–804 (1976) · Zbl 0348.10015
[46] Siegel, C.L.: Advanced Analytic Number Theory, Tata Institute for Fundamental Research, Bombay, 1980
[47] Skoruppa, N.-P., Zagier, D.B.: Jacobi forms and a certain space of modular forms, Invent. Math.94, 113–146 (1988) · Zbl 0651.10020
[48] Sturm, J.: Projections ofC automorphic forms, Bull. AMS2, 435–439 (1980) · Zbl 0433.10013
[49] Tate, J.: Relations betweenK 2 and Galois cohomology, Invent. Math.36, 257–274 (1976) · Zbl 0359.12011
[50] Waldspurger, J.-L.: Correspondences de Shimura, in: Proc. ICM 1983 Warszawa, pp. 525–531 · Zbl 0567.10020
[51] Wiles, A.: On ordinary {\(\lambda\)}-adic representations associated to modular forms, Invent. Math.94, 529–573 (1988) · Zbl 0664.10013
[52] Cohomologie Étale, Lect. Notes in Math.569, Springer, Berlin, Heidelberg, New York, 1977
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.