# zbMATH — the first resource for mathematics

On the $$p$$-adic height of Heegner cycles. (English) Zbl 0841.11025
B. Gross and D. Zagier [Invent. Math. 84, 225-320 (1986; Zbl 0608.14019)] proved a formula which relates the first derivative of the $$L$$-function of a modular form $$f$$ of weight 2 on $$\Gamma_0 (N)$$ and the Néron-Tate height of a Heegner point on the $$f$$-part of the Jacobian $${\mathcal J}_0 (N)$$. A $$p$$-adic version of this formula was later found by B. Perrin-Riou [Invent. Math. 89, 455-510 (1987; Zbl 0645.14010)].
Now let $$f$$ be a modular form of even weight $$2r> 2$$. The author proves, under suitable hypotheses, a $$p$$-adic version of the Gross and Zagier formula in this context (Theorem A): the first derivative of a $$p$$-adic $$L$$-function at the central point is related to the $$p$$-adic height of a Heegner cycle. The proof of Theorem A closely follows Perrin-Riou’s article. Some arguments are however different, mainly because an archimedean analogue of the Gross and Zagier formula for higher weight modular forms is still lacking. Ideas of J.-L. Brylinski’s article [Duke Math. J. 59, 1-26 (1989; Zbl 0702.14016)] are of great importance here. The author uses Theorem A and his own generalization of Kolyvagin’s method of Euler systems to modular forms of even weight to obtain a (weak) form of the conjecture of Beilinson and Bloch in this situation (Theorem B).

##### MSC:
 11F67 Special values of automorphic $$L$$-series, periods of automorphic forms, cohomology, modular symbols 14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) 11G40 $$L$$-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
Full Text:
##### References:
  Atkin, A.O.L., Lehner, J.: Hecke operators on{$$\Gamma$$} 0(m), Math. Ann.185, 134–160 (1970) · Zbl 0185.15502  Atkin, A.O.L., Li, W.: Twists of Newforms and Pseudo-Eigenvalues ofW-Operators, Invent. Math.48, 221–243 (1978) · Zbl 0377.10017  Beilinson, A.A.: Height pairing between algebraic cycles, in:K-theory, Arithmetic and Geometry; Seminar, Moscow 1984–86 (Manin, Yu.I., ed.), Lect. Notes in Math.1289, Springer, Berlin, Heidelberg, New York, 1987, pp. 1–26  Berthelot, P.: Remarks on Faltings’ approach to theC cris conjecture, preprint Rennes, June 21, 1994  Bloch, S., Kato, K.:L-functions and Tamagawa numbers of motives, in: The Grothendieck Festschrift I. Progress in Mathematics86, Birkhäuser, Boston, Basel, Berlin, 1990, pp. 333–400 · Zbl 0768.14001  Brylinski, J.-L.: Heights for local systems on curves, Duke Math. J.59, 1–26 (1989) · Zbl 0702.14016  Bump, D., Friedberg, S., Hoffstein, J.: Nonvanishing theorems forL-functions of modular forms and their derivatives, Invent. Math.102, 543–618 (1990) · Zbl 0721.11023  Carayol, H.: Sur les représentationsl-adiques, attachées aux formes modulaires de Hilbert, Ann. Sci. Ec. Norm. Supér.19, 409–469 (1986) · Zbl 0616.10025  Deligne, P.: Formes modulaires et représentations -adiques, in: Séminaire Bourbaki, No 355, Lect. Notes in Math,179, Springer, Berlin, Heidelberg, New York, 1971, pp. 139–172  Deligne, P.: La conjecture de Weil II, Publ. Math. de l’I.H.E.S.52, 137–252 (1980)  Faltings, G.: Crystalline cohomology andp-adic Galois representations, in: Algebraic Analysis, Geometry, and Number Theory (Igusa, J.-I., ed.), John Hopkins University Press, Baltimore, 1990, pp. 25–79  Fontaine, J.-M., Messing, W.:p-adic periods andp-adic étale cohomology, in: Current Trends in Arithmetic Algebraic Geometry. Contemporary Mathematics67, American Mathematical Society, Providence, Rhode Island, 1987, pp. 179–207  Fontaine, J.-M., Perrin-Riou, B.: Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L, in: Motives, Proceedings of AMS Summer Research Conference held in July 1991, Seattle, Proceedings of Symposia in Pure Mathematics55/I, American Mathematical Society, Providence, Rhode Island, 1994, pp. 599–706 · Zbl 0821.14013  Greenberg, R.: Iwasawa Theory forp-adic Representations, in: Algebraic Number Theory, in honor of K. Iwasawa, Advanced Studies in Pure Mathematics, Academic Press, Boston, 1989, pp. 97–137  Gros, M.: Régulateurs syntomiques et valeurs de fonctionsL p-adiques I, Invent. Math.99, 293–320 (1990) · Zbl 0667.14006  Gross, B.H.: Heegner points onX 0(N), in: Modular Forms (Rankin, R.A., ed.), Ellis Horwood, Chichester, 1984, pp. 87–106  Gross, B.H., Zagier, D.B.: Heegner points and derivatives ofL-series, Invent. Math.84, 225–320 (1986) · Zbl 0608.14019  Gross, B.H., Kohnen, W., Zagier, D.B.: Heegner points and derivatives ofL-series II, Math. Ann.278, 497–562 (1987) · Zbl 0641.14013  Hatcher, R.L.: Heights andL-series, Canad. J. Math.XLII, 533–560 (1990) · Zbl 0723.11024  Hida, H.: Ap-adic measure attached to the zeta functions associated with two elliptic modular forms. I, Invent. Math.79, 159–195 (1985) · Zbl 0573.10020  Hida, H.: Ap-adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier38, 1–83 (1988) · Zbl 0645.10028  Iwaniec, H.: On the order of vanishing of modularL-functions at the critical point, Séminaire de Théorie des Nombres, Bordeaux2, 365–376 (1990) · Zbl 0719.11029  Jannsen, U.: Continuous Étale Cohomology, Math. Ann.280, 207–245 (1988) · Zbl 0649.14011  Jannsen, U.: Mixed Motives and AlgebraicK-Theory, Lect. Notes in Math.1400, Springer, Berlin, Heidelberg, New York, 1990 · Zbl 0691.14001  Kato, K., Messing, W.: syntomic cohomology andp-adic étale cohomology, Tôhoku Math. J.44, 1–9 (1992) · Zbl 0792.14008  Katz, N., Mazur, B.: Arithmetic moduli of elliptic curves, Ann. of Math. Studies108, Princeton Univ. Press, Princeton, 1985 · Zbl 0576.14026  Katz, N., Messing, W.: Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math.,23, 73–77 (1974) · Zbl 0275.14011  Kolyvagin, V.A.: Euler systems, in: The Grothendieck Festschrift II, Progress in Mathematics87, Birkhäuser, Boston, Basel, Berlin, 1990, pp. 435–483 · Zbl 0742.14017  Lingen, J. van der: Intersection of Heegner divisors onX 0(N), Minor Thesis, Amsterdam University  Mazur, B., Tate, J., Teitelbaum, J.: Onp-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math.84, 1–48 (1986) · Zbl 0699.14028  Murty, V.K., Murty, M.R.: Mean values of derivatives of modularL-series, Ann. of Math.133, 447–475 (1991) · Zbl 0745.11032  Nekovář, J.: Kolyvagin’s method for Chow groups of Kuga-Sato varieties, Invent. Math.107, 99–125 (1992) · Zbl 0741.14002  Nekovář, J.: Onp-adic height pairings, in: Séminaire de théorie des nombres de Paris 1990/91, Progress in Math.108, (David, S., ed.), Birkhäuser, Boston, 1993, pp. 127–202  Nekovář, J.: Syntomic cohomology andp-adic regulators, in preparation  Perrin-Riou, B.: FonctionsL p-adiques associées à une forme modulaire et à un corps quadratique imaginaire, J. London Math. Soc.38, 1–32 (1988) · Zbl 0656.10019  Perrin-Riou, B.: Points de Heegner et dérivées de fonctionsL p-adiques, Invent. Math.89, 455–510 (1987) · Zbl 0645.14010  Perrin-Riou, B: Théorie d’Iwasawa et hauteursp-adiques, Invent. Math.109 (1992), 137–185 · Zbl 0781.14013  Scholl, A.J.: Motives for modular forms, Invent. Math.100, 419–430 (1990) · Zbl 0760.14002  Scholl, A.J.: Height pairings and values ofL-functions, in: Motives, Proceedings of AMS Summer Research Conference held in July 1991, Seattle, Proceedings of Symposia in Pure Mathematics55/I, American Mathematical Society, Providence, Rhode Island, 1994, pp. 571–598  Schoen, C.: Complex multiplication cycles and a conjecture of Beilinson and Bloch, Trans. A.M.S.339 (1993), 87–115 · Zbl 0811.14003  Schneider, P.:p-adic height pairings I, Invent. Math.69, 401–409 (1982) · Zbl 0509.14048  Schneider, P.:p-adic height pairings II, Invent. Math.79, 329–374 (1985) · Zbl 0571.14021  Serre, J.-P.: Cohomologie Galoisienne, Lect. Notes in Math.5, Springer, Berlin, Göttingen, Heidelberg, New York, 1964 · Zbl 0143.05901  Serre, J.-P., Tate, J.: Good reduction of abelian varieties, Ann. of Math.88, 492–517 (1968) · Zbl 0172.46101  Shimura, G.: The Special Values of the Zeta Functions Associated with Cusp Forms, Comm. Pure Appl. Math.39, 783–804 (1976) · Zbl 0348.10015  Siegel, C.L.: Advanced Analytic Number Theory, Tata Institute for Fundamental Research, Bombay, 1980  Skoruppa, N.-P., Zagier, D.B.: Jacobi forms and a certain space of modular forms, Invent. Math.94, 113–146 (1988) · Zbl 0651.10020  Sturm, J.: Projections ofC automorphic forms, Bull. AMS2, 435–439 (1980) · Zbl 0433.10013  Tate, J.: Relations betweenK 2 and Galois cohomology, Invent. Math.36, 257–274 (1976) · Zbl 0359.12011  Waldspurger, J.-L.: Correspondences de Shimura, in: Proc. ICM 1983 Warszawa, pp. 525–531 · Zbl 0567.10020  Wiles, A.: On ordinary {$$\lambda$$}-adic representations associated to modular forms, Invent. Math.94, 529–573 (1988) · Zbl 0664.10013  Cohomologie Étale, Lect. Notes in Math.569, Springer, Berlin, Heidelberg, New York, 1977
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.