zbMATH — the first resource for mathematics

Note on the capacity in Orlicz spaces. (Note sur la capacitabilité dans les espaces d’Orlicz.) (French. Extended English abstract) Zbl 0841.46017
Summary: If \(L_A(\mathbb{R}^n)\) is a reflexive Orlicz space, then analytic sets are \(C_{k, A}\)-capacitable. This improves results obtained by the author and A. Benkirane in [Ann. Sci. Math. Quebec 18, No. 1, 1-23 (1994; Zbl 0822.31006) and 18, No. 2, 105-118 (1994; Zbl 0826.46022)] when \(L_A(\mathbb{R}^n)\) is uniformly convex with respect to the Luxemburg norm.

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46B20 Geometry and structure of normed linear spaces
31C45 Other generalizations (nonlinear potential theory, etc.)
Full Text: Link