×

zbMATH — the first resource for mathematics

Note on the capacity in Orlicz spaces. (Note sur la capacitabilité dans les espaces d’Orlicz.) (French. Extended English abstract) Zbl 0841.46017
Summary: If \(L_A(\mathbb{R}^n)\) is a reflexive Orlicz space, then analytic sets are \(C_{k, A}\)-capacitable. This improves results obtained by the author and A. Benkirane in [Ann. Sci. Math. Quebec 18, No. 1, 1-23 (1994; Zbl 0822.31006) and 18, No. 2, 105-118 (1994; Zbl 0826.46022)] when \(L_A(\mathbb{R}^n)\) is uniformly convex with respect to the Luxemburg norm.

MSC:
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46B20 Geometry and structure of normed linear spaces
31C45 Other generalizations (nonlinear potential theory, etc.)
PDF BibTeX XML Cite
Full Text: Link