Fried, David The flat-trace asymptotics of a uniform system of contractions. (English) Zbl 0841.58052 Ergodic Theory Dyn. Syst. 15, No. 6, 1061-1073 (1995). A variant of the Taylor approximation for periodic points of a system of contraction mappings is given and applied to the problem of analytic continuation of geometric zeta functions. The results are similar to D. Ruelle [Publ. Math., Inst. Hautes Etud. Sci. 72, 175-193 (1990; Zbl 0732.47003)] but the approach is somewhat simpler. Reviewer: A.Deitmar (Heidelberg) Cited in 1 ReviewCited in 5 Documents MSC: 37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory, local dynamics 47A10 Spectrum, resolvent Keywords:geometric zeta functions PDF BibTeX XML Cite \textit{D. Fried}, Ergodic Theory Dyn. Syst. 15, No. 6, 1061--1073 (1995; Zbl 0841.58052) Full Text: DOI References: [1] Fried, Ann. Sci. E.N.S. 19 pp 491– (1986) [2] Chowla, Can. J. Math. 3 pp 328– (1951) · Zbl 0043.25904 · doi:10.4153/CJM-1951-038-3 [3] Atiyah, Notes on the Lefschetz fixed point theorem for elliptic complexes (1964) · Zbl 0161.43101 [4] Tangerman, Meromorphic continuation of Ruelle zeta functions (1986) [5] DOI: 10.1215/S0012-7094-41-00805-0 · Zbl 0025.06003 · doi:10.1215/S0012-7094-41-00805-0 [6] Simon, Trace Ideals and their Applications. LMS Lecture Notes 35. (1979) · Zbl 0423.47001 [7] Fried, Contemp. Math. 58 pp 19– (1987) · doi:10.1090/conm/058.3/893856 [8] DOI: 10.1007/BF01403069 · Zbl 0329.58014 · doi:10.1007/BF01403069 [9] Ruelle, Publ. Math IHES 72 pp 175– (1990) · Zbl 0732.47003 · doi:10.1007/BF02699133 [10] DOI: 10.2307/1969989 · Zbl 0070.38603 · doi:10.2307/1969989 [11] DOI: 10.1007/BF02473355 · Zbl 0714.58018 · doi:10.1007/BF02473355 [12] DOI: 10.1215/S0012-7094-70-03759-2 · Zbl 0216.41602 · doi:10.1215/S0012-7094-70-03759-2 [13] Grothendieck, Bull. Soc. Math. France 84 pp 319– (1956) [14] DOI: 10.1112/plms/s2-53.2.109 · Zbl 0054.04906 · doi:10.1112/plms/s2-53.2.109 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.