×

zbMATH — the first resource for mathematics

A matrix constructive method for the analytic-numerical solution of coupled partial differential systems. (English) Zbl 0841.65087
The paper considers analytic-numerical methods for initial-boundary problems for systems of the following type \(u_t - Au_{xx} - Bu = 0\), where \(B\) is an arbitrary square matrix and \(A\) has a positive definite symmetric part. Dirichlet boundary conditions are considered and a method related to separation of variables is introduced. The method is based on truncation of the infinite series and its analysis substantially uses the smoothing property of the parabolic equation.
MSC:
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35K15 Initial value problems for second-order parabolic equations
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] T.M. Apostol: Mathematical Analysis. Addison-Wesley, Reading M.A., 1977.
[2] F.L. Bauer, A.S. Householder: Absolute norms and characteristic roots. Numerische Math. 3 (1961), 241-246. · Zbl 0111.01601 · doi:10.1007/BF01386023 · eudml:131494
[3] I.E. Butsenieks, E.V. Shcherbinin: Magnetohydrodynamic flow in electrodynamically coupled rectangular ducts I. Magn. Girodinam 2 (1976), 35-40.
[4] J.R. Cannon, R.E. Klein: On the observability and stability of the temperature distribution in a composite head conductor. SIAM J. Appl. Math. 24 (1973), 596-602. · Zbl 0236.35026 · doi:10.1137/0124061
[5] H.H. Chiu: Theory of irreducible linear systems. Quart. Appl. Maths. XXVII (1969), 87-104. · Zbl 0176.09001
[6] R.V. Churchill, J.W. Brown: Fourier Series and Boundary Value Problems. McGraw-Hill, New York, 1978.
[7] R. Courant, D. Hilbert: Methods of Mathematical Physics, Vol. II. Interscience, New York, 1962. · Zbl 0099.29504
[8] G.H. Golub, C.F. van Loan: Matrix Computations. Johns Hopkins Univ. Press, Baltimore M.A., 1985. · Zbl 0592.65011
[9] K. Gopalsamy: An arms race with deteriorating armaments. Math. Biosci. 37 (1977), 191-203. · Zbl 0368.90101 · doi:10.1016/0025-5564(77)90092-X
[10] J.M. Hill, J.R. Willis: Analytic aspects of heat flow in random two-component laminates. Quart. Appl. Maths. 46 (1988), no. 2, 353-364. · Zbl 0658.76084
[11] L. Jódar: Computing accurate solutions for coupled systems of second order partial differential equations. Int. J. Computer Math. 37 (1990), 201-212. · Zbl 0736.35052 · doi:10.1080/00207169008803948
[12] L. Jódar: Computing accurate solutions for coupled systems of second order partial differential equations II. Int. J. Computer Math. 46 (1992), 63-75. · Zbl 0813.65114
[13] A.I. Lee, J.M. Hill: On the general linear coupled system for diffusion in media with two diffusivities. J. Math. Anal. Appl. 89 (1982), 530-557. · Zbl 0493.35051 · doi:10.1016/0022-247X(82)90116-0
[14] M. Mascagni: An initial-boundary value problem of physiological significance for equations of nerve conduction. Com. Pure Appl. Math. XLII (1989), 213-227. · Zbl 0664.92007 · doi:10.1002/cpa.3160420206
[15] M. Mascagni: The backward Euler method for numerical solution of the Hodgkin-Huxley equations of nerve condition. SIAM J. Numer. Anal. 27 (1990), no. 4, 941-962. · Zbl 0707.92006 · doi:10.1137/0727054
[16] M. Mascagni: A parallelizing algorithm for compution solutions to arbitrarily branched cable neutron models. J. Neurosc. Methods 36 (1991), 105-114.
[17] C.B. Moler, C.F. van Loan: Nineteen dubious ways to compute the exponential of a matrix. SIAM Review 20 (1978), 801-836. · Zbl 0395.65012 · doi:10.1137/1020098
[18] M. Sezgin: Magnetohydrodynamic flow in an infinite channel. Int. J. Numer. Methods Fluids 6 (1986), 593-609. · Zbl 0597.76116 · doi:10.1002/fld.1650060903
[19] J. Stoer, R. Bulirsch: Introduction to Numerical Analysis. Springer-Verlag, New York, 1980. · Zbl 0423.65002
[20] K.S. Yee: Explicit solutions for the initial boundary value problem of a system of lossless transmission lines. SIAM J. Appl. Math. 24 (1975), 62-80. · Zbl 0232.35018 · doi:10.1137/0124008
[21] E.C. Zachmanoglou, D.W. Thoe: Introduction to Partial Differential Equations with Applications. William and Wilkins, Baltimore, 1976. · Zbl 0327.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.