zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The numerical inversion of two classes of Kontorovich-Lebedev transform by direct quadrature. (English) Zbl 0841.65124
The numerical inversion of the Kontorovich-Lebedev transform is examined by using direct quadrature techniques. A set of routines for tabulating the Macdonald and Kelvin functions as kernels is designed, and an application to a divergent inversion integral, summable in the sense of Abel is made.

MSC:
65R10Integral transforms (numerical methods)
44A15Special transforms (Legendre, Hilbert, etc.)
WorldCat.org
Full Text: DOI
References:
[1] Abramowitz, M.; Stegun, I.: Handbook of mathematical functions. (1965) · Zbl 0171.38503
[2] Ditkin, V. A.; Prudnikov, A. P.: Integral transforms and operational calculus. (1965) · Zbl 0133.06202
[3] Ehrenmark, U. T.: Far field asymptotics of the two-dimensional linearised sloping beach problem. SIAM J. Appl. math. 47, No. 5, 965-981 (1987) · Zbl 0624.76015
[4] Ehrenmark, U. T.: A three-point formula for numerical quadrature of oscillatory integrals with variable frequency. J. comput. Appl. math. 21, 87-99 (1988) · Zbl 0632.65017
[5] Ehrenmark, U. T.: A mixed problem for the biharmonic equation in a wedge with application to dissipating linear waves on a plane beach. Quart. J. Mech. appl. Math. 45, No. 3, 407-433 (1992) · Zbl 0770.76022
[6] Ehrenmark, U. T.: On computing uniformly valid approximations for viscous waves on a plane beach. J. comput. Appl. math. 50, 263-281 (1994) · Zbl 0807.76020
[7] Hildebrand, F. B.: Introduction to numerical analysis. (1956) · Zbl 0070.12401
[8] Jones, D. S.: The kontorovich-lebedev transform. J. inst. Math. appl. 26, 133-141 (1981) · Zbl 0449.44003
[9] Köhler, P.: On the error of parameter-dependent compound quadrature formulas. J. comput. Appl. math. 47, No. 1, 47-60 (1993) · Zbl 0772.41030
[10] Kontorovich, M. J.; Lebedev, N. N.: On a method of solutions of some problems of the diffraction theory. J. phys. 1, 229-241 (1939) · Zbl 65.1511.02
[11] Magnus, W.; Oberhettinger, F.; Soni, R. P.: Special functions of mathematical physics. (1966) · Zbl 0143.08502
[12] Oberhettinger, F.: Tables of Bessel transforms. (1972) · Zbl 0261.65003
[13] Piessens, R.: New quadrature formulas for the numerical inversion of the Laplace transform. Bit 9, 351-361 (1969) · Zbl 0194.47105
[14] Sidi, A.: The numerical evaluation of very oscillatory infinite integrals by extrapolation. Math. comp. 38, No. 158, 517-529 (1982) · Zbl 0508.65011
[15] Sidi, A.: An algorithm for a special case of a generalization of the Richardson extrapolation process. Numer. math. 38, 299-307 (1982) · Zbl 0485.65004
[16] Sidi, A.: Extrapolation methods for divergent oscillatory integrals that are defined in the sense of summability. J. comp. Appl. math. 17, 105-114 (1987) · Zbl 0634.41018
[17] Sidi, A.: A user-friendly extrapolation method for oscillatory infinite integrals. Math. comp. 51, 249-266 (1988) · Zbl 0694.40004
[18] Sneddon, I. H.: The use of integral transforms. (1972) · Zbl 0237.44001
[19] Theocaris, P. S.; Chrysakis, A. C.: Numerical inversion of the Mellin transform. J. inst. Math. appl. 20, 73-83 (1977) · Zbl 0364.65111
[20] Watson, G. N.: A treatise on the theory of Bessel functions. (1944) · Zbl 0063.08184