×

On the center of the enveloping algebra of a Takiff algebra. (Sur le centre de l’algèbre enveloppante d’une algèbre de Takiff.) (French) Zbl 0842.17008

This paper is an expanded version of [C. R. Acad. Sci., Paris, Sér. I 319, 11-14 (1994; Zbl 0812.17010)]; some additional details are provided and an explicit characterization of an important irreducible variety arising in the earlier paper is given.

MSC:

17B35 Universal enveloping (super)algebras
16S30 Universal enveloping algebras of Lie algebras

Citations:

Zbl 0812.17010
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] Carter, R.W., Finite groups of Lie type : Conjugacy classes and complex characters, John Wiley and Sons, Chichester - New York, 1985. · Zbl 0567.20023
[2] Chevalley, C., Théorie des groupes de Lie, tome II, , Hermann & Cie, 1951. · Zbl 0054.01303
[3] Dieudonne, J., Cours de géométrie algébrique tome 2, , Presses Universitaires de France, 1974. · Zbl 1092.14500
[4] Dixmier, J., Algèbres enveloppantes, , fascicule 37, Gauthier-Villars, 1974. · Zbl 0308.17007
[5] Kostant, B., Lie group representations on polynomial rings, Amer. J. Math., 85, p327-404, 1963. · Zbl 0124.26802
[6] Raïs, M. ET Tauvel, P., Indice et polynômes invariants pour certaines algèbres de Lie, J. reine angew. Math., 425, p123-140, 1992. · Zbl 0743.17008
[7] Richardson, R.W., Derivatives of invariant polynomials on a semisimple Lie algebra, Miniconference on harmonic analysis and operators algebras, Camberra, Proc. Centre of Math. Anal. Austral. Nat. Univ., 1987. · Zbl 0637.17004
[8] Shafarevich, I.R., Basic algebraic geometry, Springer Verlag, Berlin - Heidelberg - New York, 1977. · Zbl 0362.14001
[9] Springer, T.A., Linear algrebraic groups, Progress in Mathematics, Birkhäuser, 1981. · Zbl 0453.14022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.