zbMATH — the first resource for mathematics

A remark on differential operator algebras and an equivalence of categories. (English) Zbl 0842.17009
Let \(G\) be a complex connected reductive algebraic group and \(P\) a parabolic subgroup of \(G\) containing a maximal torus \(H\). Denote their Lie algebras by \({\mathfrak g}\), \({\mathfrak p}\), \({\mathfrak h}\). To \(\lambda\in ({\mathfrak p}^*)^P\) one can associate, in a standard way, a sheaf of \(G\)-equivariant differential operators on \(G/P\) with ring of global sections \(A_\lambda\). There is a natural map \(\Phi_\lambda: U({\mathfrak g})\to A_\lambda\). One is interested in when this map is surjective; it need not be.
To explain the author’s result we need some notation. One regards \(\lambda\) as an element of \({\mathfrak h}^*\). Now let \(\Delta\) denote the set of positive roots of \({\mathfrak h}\) in the Lie algebra of a Levi factor of the commutator subgroup of \(P\) and let \(\rho\) denote the half-sum of the elements of \(\Delta\). It is shown that if \(\lambda\) is dominant integral on \(\Delta\) and \(\lambda+ \rho\) is dominant then \(\Phi_\lambda\) is surjective. This proves a result announced by Vogan. According to the author, Vogan has not published a proof of his assertion. One can identify \(A_\lambda\) with the module of \({\mathfrak g}\)-finite endomorphisms of a certain generalized Verma module. Usually, one imposes a \({\mathfrak p}\)-antidominance condition on \(\lambda+ \rho\) (rather than dominance) so that the generalized Verma module is simple which gives a surjectivity. So the point is that the author has managed to alter this hypothesis.

17B35 Universal enveloping (super)algebras
16S30 Universal enveloping algebras of Lie algebras
Full Text: Numdam EuDML
[1] Beilinson, A. and Bernstein, J. , Localisation de g-modules , C. R. Acad. Sci. 292 (1981), 15-18. · Zbl 0476.14019
[2] Bernstein, J. and Gelfand, S.I. , Tensor products of finite and infinite dimensional representations of semisimple Lie algebras , Comp. Math. 41 (1980), 245 - 285. · Zbl 0445.17006 · numdam:CM_1980__41_2_245_0 · eudml:89458
[3] Borho, W. and Brylinski, J.-L. , Differential operators on homogeneous spaces I: Irreducibility of the associated variety for annihilators of induced modules , Inv. Math. 69 (1982), 437-476. · Zbl 0504.22015 · doi:10.1007/BF01389364 · eudml:142963
[4] Borho, W. and Jantzen, J.C. , Über primitive Ideale in der Einhüllenden einer halbeinfacher Lie-Algebra , Inv. Math. 39 (1977), 1-53. · Zbl 0327.17002 · doi:10.1007/BF01695950 · eudml:142455
[5] Brylinski, J.-L. , Differential operators on the flag varieties, in Proceedings , Conference on Young Tableaux and Schur Functors in Algebra and Geometry, Torùn, 1980, Astérisque 87-88 (1981), 43-60. · Zbl 0537.14010
[6] Conze, N. and Duflo, M. , Sur les représentations induites des algèbres de Lie semisimples complexes , Comp. Math. 34 (1976), 307 - 336. · Zbl 0389.22016 · numdam:CM_1977__34_3_307_0 · eudml:89330
[7] Gabber, O. and Joseph, A. , On the Bernstein-Gelfand-Gelfand resolution and the Duflo sum formula , Comp. Math. 43 (1981), 107-131. · Zbl 0461.17004 · numdam:CM_1981__43_1_107_0 · eudml:89490
[8] Jantzen, J.C. , Einhüllende Algebren Halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihre Grenzgebiete , Band 3, Springer-Verlag, New York, 1983. · Zbl 0541.17001
[9] Joseph, A. , On the annihilators of the simple subquotients of the principal series , Ann. Ec. Norm. Sup. 10 (1977), 419 - 440. · Zbl 0386.17004 · doi:10.24033/asens.1332 · numdam:ASENS_1977_4_10_4_419_0 · eudml:82001
[10] Joseph, A. , Dixmier’s problem for Verma and principal series submodules , J. London Math. Soc. 20 (1979) 193 - 204. · Zbl 0421.17005 · doi:10.1112/jlms/s2-20.2.193
[11] Joseph, A. , Kostant’s problem, Goldie rank, and the Gelfand-Kirillov conjecture , Inv. Math. 56 (1980), 191- 213. · Zbl 0446.17006 · doi:10.1007/BF01390044 · eudml:142695
[12] Vogan, D. , The orbit method and primitive ideals for semisimple Lie algebras , In: Lie Algebras and Related Topics, Canad. Math. Soc. Conf. Proc. , vol. 5, (D. Britten et al., eds.), American Mathematical Society for CMS, Providence, RI, 1986, 281- 316. · Zbl 0585.17008
[13] Vogan, D. , Dixmier algebras, sheets, and representations theory , In: Actes du colloque en l’honneur de Jacques Dixmier , Paris, 1989, Progress in Math. # 92 , Birkhäüser, Boston, 1990, 333-395. · Zbl 0854.17010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.