Dancer, E. N. A counterexample on competing species equations. (English) Zbl 0842.35033 Differ. Integral Equ. 9, No. 2, 239-246 (1996). The author considers the competing species system \[ - \Delta u = u(a - u - bv), \quad - \Delta v = v(d - v - cu) \quad \text{in } \Omega \] with boundary condition \(u = v = 0\) on \(\partial \Omega\). Using calculations from [J. C. Eilbeck, J. E. Furter and J. Lopez-Gomez, J. Differ. Equ. 107, No. 1, 96-139 (1994; Zbl 0833.92010)], he shows that there is no positive solution of this system for certain parameter values \(a,b,c,d\), where \(a\) and \(d\) are close to the first eigenvalue of \(-\Delta\) with homogeneous boundary condition. Cited in 13 Documents MSC: 35J65 Nonlinear boundary value problems for linear elliptic equations 35J55 Systems of elliptic equations, boundary value problems (MSC2000) Keywords:nonexistence of positive solutions; bifurcation equation Citations:Zbl 0833.92010 PDF BibTeX XML Cite \textit{E. N. Dancer}, Differ. Integral Equ. 9, No. 2, 239--246 (1996; Zbl 0842.35033) OpenURL