×

zbMATH — the first resource for mathematics

A notion of total variation depending on a metric with discontinuous coefficients. (English) Zbl 0842.49016
The authors consider the problem of defining a perimeter of a set when \(\mathbb{R}^n\) is endowed with a general distance. More precisely, if \(\Omega\) is a Lipschitz bounded open subset of \(\mathbb{R}^n\) and \(\phi: \Omega\times \mathbb{R}^n\to [0, +\infty[\) is a Borel function with \(\phi(x,\cdot)\) convex and one-homogeneous, and such that \(\phi(x, z)\leq C|z|\), for every \(u\in \text{BV}(\Omega)\) the total variation of \(u\) with respect to \(\phi\) is defined by \[ \int_\Omega |Du|_\phi= \sup\Biggl\{ \int_\Omega u\text{ div } \sigma dx\Biggr\}, \] where the supremum is taken over all vector fields \(\sigma\in L^\infty(\Omega; \mathbb{R}^n)\) with compact support in \(\Omega\) such that \(\text{div } \sigma\in L^n(\Omega)\) and \(\phi^0(x, \sigma(x))\leq 1\) on \(\Omega\), \(\phi^0\) being the dual function of \(\phi\).
It is proven that \(\int_\Omega |Du|_\phi\) can be represented in an integral form with respect to the measure \(|Du|\). Moreover, if \({\mathcal F}[\phi]: \text{BV}(\Omega)\to [0, +\infty]\) is the functional defined by \[ {\mathcal F}[\phi](u)= \begin{cases} \int_\Omega \phi(x, \nabla u(x))dx\quad & \text{if } u\in W^{1,1}(\Omega),\\ + \infty\quad & \text{otherwise},\end{cases} \] and if \(\overline{{\mathcal F}[\phi]}: \text{BV}(\Omega)\to [0, +\infty]\) denotes the relaxed functional of \({\mathcal F}[\phi]\) in the topology \(L^1(\Omega)\), we have \[ \int_\Omega |Du|_\phi= \overline{{\mathcal F}[\phi]}(u)\qquad \forall u\in \text{BV}(\Omega). \] Finally, setting for all \(u\in \text{BV}(\Omega)\) \(\nu^u(x)= {dDu\over d|Du|} (x)\) and \({\mathcal I}[\phi](u)= \int_\Omega \phi(x, \nu^u(x)) d|Du|\) it is shown that the relaxed functional \(\overline{{\mathcal I}[\phi]}\) of \({\mathcal I}[\phi]\) on \(\text{BV}(\Omega)\) coincides with \(\overline{{\mathcal F}[\phi]}\) provided \(\phi\) is upper semicontinuous. On the contrary, when \(\phi\) is only a Borel function, denoting by \({\mathcal N}(\Omega)\) the class of Lebesgue negligible subsets of \(\Omega\) and setting for every \(N\in {\mathcal N}(\Omega),\) \[ \phi_N(x, z)= \begin{cases} \phi(x, z)\quad & \text{if } x\in \Omega\backslash N,\\ C|z|\quad & \text{if } x\in N,\end{cases} \] then for all \(u\in \text{BV}(\Omega)\), \[ \int_\Omega |Du|_\phi= \sup_{N\in {\mathcal N}(\Omega)} \overline{{\mathcal I}[\phi_N]} (u). \]
Reviewer: G.Buttazzo (Pisa)

MSC:
49J45 Methods involving semicontinuity and convergence; relaxation
49Q20 Variational problems in a geometric measure-theoretic setting
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] Alberti, G., A Lusin type theorem for gradients, J. Fund. Anal., Vol. 100, 1, 110-118, (1991) · Zbl 0752.46025
[2] G. Anzellotti, Traces of Bounded Vectorfields and the Divergence Theorm, preprint Univ. Trento, 1983.
[3] Anzellotti, G., Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura e Appl., Vol. 135, 4, 293-318, (1983) · Zbl 0572.46023
[4] Barroso, A. C.; Fonseca, I., Anisotropic singular perturbations. the vectorial case, (1992), Carnegie Mellon University, Research Report n.92-NA-015
[5] Bouchitté, G.; Valadier, M., Integral representation of convex functionals on a space of measures, J. Funct. Anal., Vol. 80, 398-420, (1988) · Zbl 0662.46009
[6] Bouchitté, G., Singular perturbations of variational problems arising from a two-phase transition model, Appl. Math. and Opt., Vol. 21, 289-315, (1990) · Zbl 0695.49003
[7] G. Bouchitté and G. Dal Maso, Integral Representation and Relaxation of Convex Local Functionals on BV(Ω), preprint SISSA, April 1991, to appear on Ann. Scuola Norm. Sup., Pisa.
[8] H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Masson, Paris, 1983.
[9] Busemann, H.; Mayer, W., On the foundations of calculus of variations, Trans. Amer. Math., Soc., Vol. 49, 173-198, (1941) · JFM 67.1036.03
[10] Busemann, H., Metric methods in Finsler spaces and in the foundations of geometry, Ann. of Math. Studies, Vol. 8, (1942), Princeton Univ. Press Princeton · Zbl 0063.00672
[11] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Longman, Harlow, 1989. · Zbl 0669.49005
[12] Buttazzo, G.; Dal Maso, G., Integral representation and relaxation of local functionals, Nonlinear Analysis, Theory, Methods & Applications, Vol. 9, 515-532, (1985) · Zbl 0527.49008
[13] Castaing, C.; Valadier, M., Convex analysis and measurable multifunctions, Lect. Not. in Math, Vol. 580, (1977), Springer-Verlag Berlin · Zbl 0346.46038
[14] Dacorogna, B., Direct methods in the calculus of variations, (1989), Springer-Verlag Berlin · Zbl 0703.49001
[15] Dal Maso, G., Integral representation on BV(ω) of г-limits of variational integrals, Manuscripta Math., Vol. 30, 387-416, (1980) · Zbl 0435.49016
[16] G. Dal Maso, An Introduction to Г-Convergence, preprint SISSA, 1992, Trieste, to appear on Birkhäuser.
[17] G. Dal Maso and L. Modica, A General Theory of Variational Functionals, in: Topics in Functional Analysis (1980-1981), Quaderni Scuola Norm. Sup. Pisa, Pisa, 1980, pp. 149-221.
[18] G. De Cecco, Geometria sulle Varietà di Lipschitz, preprint Univ. di Roma “La Sapienza”, 1992, pp. 1-38.
[19] De Cecco, G.; Palmieri, G., Distanza intriseca su una varietà riemanniana di Lipschitz, Rend. Sem. Mat. Univ. Pol. Torino, Vol. 46, 157-170, (1988)
[20] De Cecco, G.; Palmieri, G., Lenght of curves on lip manifolds, Rend. Mat. Acc. Lincei, Vol. 1, 9, 215-221, (1990) · Zbl 0719.53046
[21] De Cecco, G.; Palmieri, G., Integral distance on a Lipschitz Riemannian manifold, Math. Zeitschrift, Vol. 207, 223-243, (1991) · Zbl 0722.58006
[22] E. De Giorgi, Nuovi Teoremi Relativi alle Misure (r-1)-dimensionali in uno Spazio a r Dimensioni, Ricerche Mat. IV, 1955, pp. 95-113. · Zbl 0066.29903
[23] De Giorgi, E., Conversazioni di matematica, Quaderni Dip. Mat. Univ. Lecce, Vol. 2, (1990), 1988-1990
[24] De Giorgi E. Su Alcuni Problemi Comuni all’Analisi e alla Geometria. Note di Matematica, IX-Suppl., 1989, pp. 59-71.
[25] E. De Giorgi, Alcuni Problemi Variazionali della Geometria, Conference in onore di G. Aquaro, Bari, Italy, 9 Nov. 1990, 1991, pp. 112-125, Conferenze del Sem. Mat. Bari.
[26] E. De Giorgi, F. Colombini and L. C. Piccinini, Frontiere Orientate di Misura Minima e Questioni Collegate, Quaderni della Classe di Scienze della Scuola Normale Superiore di Pisa, Pisa, 1972.
[27] Ekeland, I.; Теmam, R., Convex analysis and variational problems, (1976), North-Holland New York
[28] Federer, H., Geometric measure theory, (1968), Springer-Verlag Berlin
[29] Fusco, N.; Moscariello, G., L^2-lower semicontinuity of functionals of quadratic type, Ann. di Mat. Pura e Appl., Vol. 129, 305-326, (1981) · Zbl 0483.49008
[30] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. · Zbl 0545.49018
[31] Goffman, C.; Serrin, J., Sublinear functions of measures and variational integrals, Duke Math. J., Vol. 31, 159-178, (1964) · Zbl 0123.09804
[32] Luckhaus, S.; Modica, L., The Gibbs-thomson relation within the gradient theory of phase transitions, Arch. Rat. Mech. An, Vol. 1, 71-83, (1989) · Zbl 0681.49012
[33] Massari, U.; Miranda, M., Minimal surfaces of codimension one, (1984), North-Holland New York · Zbl 0565.49030
[34] Μaz’ya, V. G., Sobolev spaces, (1985), Springer-Verlag Berlin
[35] Miranda, M., Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani, Ann. Scuola Norm. Sup., Vol. 3, 515-542, (1964), Pisa · Zbl 0152.24402
[36] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966. · Zbl 0142.38701
[37] J. Neveu, Bases Mathématiques du Calcul des Probabilités, Masson, Paris, 1980.
[38] Owen, N., Non convex variational problems with general singular perturbations, Trans. Am. Math. Soc., Vol. 310, 393-404, (1988) · Zbl 0718.34075
[39] Owen, N.; Sternberg, P., Non convex variational problems with anisotropic perturbations, Nonlin. Anal., Vol. 16, 705-719, (1991) · Zbl 0748.49034
[40] C. Pauc, La Méthode Métrique en Calcul des Variations, Hermann, Paris, 1941.
[41] Reshetnyak, Yu. G., Weak convergence of completely additive vector functions on a set, Siberian Math. J., Vol. 9, 1039-1045, (1968) · Zbl 0176.44402
[42] Rinow, W., Die innere geometrie der metrischen Räume, (1961), Springer-Verlag Berlin · Zbl 0096.16302
[43] Rockafellar, R. T., Convex analysis, (1972), Princeton University Press Princeton, New Jersey · Zbl 0224.49003
[44] Teleman, N., The index of signature operators on Lipschitz manifolds, Inst. Hautes Études Sci. Publ. Math., Vol. 58, 39-78, (1983)
[45] S. Venturini, Derivations of Distance Functions on ℝ^n, preprint, 1993.
[46] Vol’pert, A. I., The space BV and quasilinear equation, Math. USSR Sbornik, Vol. 2, 225-267, (1967) · Zbl 0168.07402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.