zbMATH — the first resource for mathematics

Multigrid methods for the biharmonic problem discretized by conforming \(C^ 1\) finite elements on nonnested meshes. (English) Zbl 0842.65081
Authors’ abstract: We consider multigrid algorithms for the biharmonic problem discretized by conforming \(C^1\) finite elements. Most finite elements for the biharmonic equation are nonnested in the sense that the coarse finite element space is not a subspace of the space of similar elements defined on a refined mesh. To define multigrid methods, certain intergrid transfer operators have to be constructed. We construct intergrid transfer operators that satisfy a certain stable approximation property. The so-called regularity-approximation assumption is established by using this stable approximation property of the intergrid transfer operator. Optimal convergence properties of the W-cycle and a uniform condition number estimate for the variable V-cycle preconditioner are established by applying an abstract result of the first author, J. E. Pasciak and J. Xu [Math. Comput. 55, No. 191, 1-22 (1990; Zbl 0703.65076)]. Our theory covers the cases when the multilevel triangulations are nonnested and the spaces on different levels are defined by different finite elements.

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
35J40 Boundary value problems for higher-order elliptic equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65F35 Numerical computation of matrix norms, conditioning, scaling
Full Text: DOI
[1] DOI: 10.1090/S0025-5718-1981-0595040-2 · doi:10.1090/S0025-5718-1981-0595040-2
[2] Bramble J., Math. Comp 60 pp 447– (1993)
[3] DOI: 10.1090/S0025-5718-1991-1052086-4 · doi:10.1090/S0025-5718-1991-1052086-4
[4] Bramble J. H., Multigrid Methods 294 (1993)
[5] DOI: 10.1090/S0025-5718-1977-0431719-X · doi:10.1090/S0025-5718-1977-0431719-X
[6] DOI: 10.1137/0726062 · Zbl 0679.65083 · doi:10.1137/0726062
[7] Cai Z., Theoretical foundations for the finite volume element methods (1990)
[8] Clarlet P. G., The Finite Element Method for Elliptic Problems (1978)
[9] Dauge M., Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymp-totics of Solutions 1341 (1988) · Zbl 0668.35001 · doi:10.1007/BFb0086682
[10] Hackbusch W., Multi-Grid Methods and Applications (1985) · Zbl 0595.65106 · doi:10.1007/978-3-662-02427-0
[11] Hanisch M. R., Multigrid preconditioning for mixed finite element methods (1991)
[12] DOI: 10.1137/0730009 · Zbl 0772.65076 · doi:10.1137/0730009
[13] McCormick S. F., Multigrid Methods (1987) · doi:10.1137/1.9781611971057
[14] Oganesjan A., Variational Difference Methods of Solving Elliptic Equations (1979)
[15] Oswald P., Preconditioners for discretizations of the biharmonic equation by rectangular finite elements, tech. report (1992)
[16] DOI: 10.1007/BF01389663 · Zbl 0554.65079 · doi:10.1007/BF01389663
[17] DOI: 10.1007/BF01408577 · Zbl 0595.65113 · doi:10.1007/BF01408577
[18] DOI: 10.1145/355759.355761 · Zbl 0375.41010 · doi:10.1145/355759.355761
[19] DOI: 10.1090/S0025-5718-1992-1122077-4 · doi:10.1090/S0025-5718-1992-1122077-4
[20] DOI: 10.1007/BF01396347 · Zbl 0667.65089 · doi:10.1007/BF01396347
[21] DOI: 10.1137/0915041 · Zbl 0803.65118 · doi:10.1137/0915041
[22] Zhang X., SIAM J. Numer. Anal. (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.