On a universal extraction procedure. (Sur un procédé universel d’extraction.) (French) Zbl 0843.11014

Let \(\theta: \mathbb{N}\to \mathbb{N}\) be a strictly increasing sequence of positive integers, set \(E= \theta (\mathbb{N})\) and let \(n= \sum_{k\geq 0} \varepsilon_k (n) \cdot d^k\) be given in \(d\)-ary digital expansion. Following P. Liardet [Acta Arith. 55, 119-135 (1990; Zbl 0716.11038)] the author considers sequences of the type \(\sigma_E (n)= \sum_{k\geq 0} \varepsilon_{\theta (k)} (n) d^k\). Periodicity and quasi-periodicity properties are investigated. For instance, it is proved that \(u\circ \sigma_E\) is \(d\)-automatic provided that \(E\) is ultimately periodic and \(u\) is \(d\)-automatic. Furthermore \(\sigma_E\) is quasi-periodic if and only if \(\lim_{n\to \infty} (\theta (n+1)- \theta (n))= \infty\).
Reviewer: R.F.Tichy (Graz)


11B85 Automata sequences
11A67 Other number representations


Zbl 0716.11038
Full Text: DOI Numdam EuDML EMIS


[1] Christol, G., Kamae, T., France, M. Mendès, Rauzy, G., Suites algébriques, automates et substitutions, Bull. Soc. Math. France108 (1980), 401-419. · Zbl 0472.10035
[2] Cobham, A., Uniform tag séquences, Mathem. Syst. Theory6, 1972, p.164-192. · Zbl 0253.02029
[3] Gel’fond, A.O., Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta ArithmeticaXIII, 1968, 259-265. · Zbl 0155.09003
[4] Kuipers, L., Niederreiter, H., Uniform distribution of sequences, Pure and applied mathematics, Wiley, New-York-NY, 1974. · Zbl 0281.10001
[5] Liardet, P., Some metric properties of subsequences, Acta ArithmeticaLV, 1990, 119-135. · Zbl 0716.11038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.