zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the solution of boundary value problem. The decomposition method. (English) Zbl 0843.34026
Bainov, D. (ed.) et al., Proceedings of the fourth international colloquium on differential equations, Plovdiv, Bulgaria, August 18-22, 1993. Utrecht: VSP. 163-166 (1994).
Summary: The method developed by Adomian, the decomposition method, supplies approximate solution to the original nonlinear and/or stochastic ordinary, partial, or integral differential equations. The approach may be used to find analytical approximations of the solution of the original equations. Since no linearization or perturbation is used and also since the solution can be approximated as close a needed, this approximate analytical solution forms a very useful tool for analyzing boundary value problems encountered in practice. It should be pointed out that these boundary value problems are usually unstable and very difficult to solve numerically. Furthermore, even for nonlinear problems without the consideration of the boundary value difficulties, linearization or perturbation approaches frequently alter the characteristics of the original problem completely. In this paper, we wish to show the difficulties in handling nonlinear boundary value problems and how the decomposition method can be used to analyze these type of problems. For the entire collection see [Zbl 0835.00017].

34B15Nonlinear boundary value problems for ODE