×

Inverse wave scattering with discontinuous wave speed. (English) Zbl 0843.34080

Summary: The inverse scattering problem on the line is studied for the generalized Schrödinger equation \((d^2 \psi/dx^2) + k^2 H(x)^2 \psi = Q(x) \psi\), where \(H(x)\) is a positive, piecewise continuous function with positive limits \(H_\pm\) as \(x \to \pm \infty\). This equation, in the frequency domain, describes the wave propagation in a nonhomogeneous medium, where \(Q(x)\) is the restoring force and \(1/H (x)\) is the variable wave speed changing abruptly at various interfaces. A related Riemann-Hilbert problem is formulated, and the associated singular integral equation is obtained and proved to be uniquely solvable. The solution of this integral equation leads to the recovery of \(H(x)\) in terms of the scattering data consisting of \(Q(x)\), a reflection coefficient, either of \(H_\pm\), and the bound state energies and norming constants. Some explicitly solved examples are provided.

MSC:

34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
81U40 Inverse scattering problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] DOI: 10.1070/SM1991v070n02ABEH001386 · Zbl 0733.34082
[2] DOI: 10.1070/SM1991v070n02ABEH001386 · Zbl 0733.34082
[3] DOI: 10.1088/0266-5611/7/4/006 · Zbl 0738.73020
[4] DOI: 10.1063/1.529714 · Zbl 0756.34083
[5] DOI: 10.1063/1.530661 · Zbl 0806.34014
[6] DOI: 10.1007/BF01158238 · Zbl 0711.47013
[7] DOI: 10.1007/BF01158238 · Zbl 0711.47013
[8] DOI: 10.1063/1.525316 · Zbl 0506.47004
[9] DOI: 10.1002/sapm1984713243 · Zbl 0557.35032
[10] DOI: 10.1016/0167-2789(86)90184-3 · Zbl 0619.35090
[11] Feldman I. A., Izv. Akad. NaukMold. SSR 10 (88) pp 16– (1961)
[12] DOI: 10.1063/1.527983 · Zbl 0709.34024
[13] DOI: 10.1063/1.528540 · Zbl 0698.35115
[14] DOI: 10.1088/0305-4470/25/15/030 · Zbl 0763.35105
[15] DOI: 10.1063/1.530894 · Zbl 0815.73015
[16] Krueger R. J., Q. Appl. Math. 34 pp 129– (1976) · Zbl 0328.35074
[17] Krueger R. J., Q. Appl. Math. 36 pp 235– (1978) · Zbl 0399.35071
[18] DOI: 10.1063/1.525358 · Zbl 0511.35079
[19] DOI: 10.1063/1.529650 · Zbl 0760.35032
[20] Faddeev L. D., Am. Math. Soc. Transl. 2 pp 139– (1964)
[21] Faddeev L. D., Tr. Mat. Inst. Steklova 73 pp 314– (1964)
[22] DOI: 10.1002/cpa.3160320202 · Zbl 0388.34005
[23] DOI: 10.1063/1.530089 · Zbl 0777.34056
[24] DOI: 10.1063/1.528167 · Zbl 0665.35070
[25] DOI: 10.1088/0266-5611/4/2/013 · Zbl 0669.34030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.