Global existence of small solutions to semilinear Schrödinger equations. (English) Zbl 0843.35111

Summary: We present global existence theorem for semilinear Schrödinger equations. In general, Schrödinger-type equations do not admit the classical energy estimates. To avoid this difficulty, we use S. Doi’s method for linear Schrödinger-type equations. Combining his method and \(L^p- L^q\) estimates, we prove the global existence of solutions with small initial data.


35Q55 NLS equations (nonlinear Schrödinger equations)
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B45 A priori estimates in context of PDEs
Full Text: DOI


[1] Chihara H., Math. Japon 42 pp 35– (1995)
[2] Chihara H., Publ. RIMS
[3] Doi S., J.Math. Kyoto Univ 34 pp 319– (1994)
[4] Hayashi N., Diff. Integral Eqs. 8 pp 1061– (1995)
[5] DOI: 10.1080/03605309408821079 · Zbl 0832.35130
[6] DOI: 10.1002/cpa.3160360106 · Zbl 0509.35009
[7] Mizohata S., On the Cauchy Problem, (1985) · Zbl 0616.35002
[8] DOI: 10.1016/0022-0396(82)90102-4 · Zbl 0518.35046
[9] DOI: 10.1016/0022-1236(92)90079-X · Zbl 0763.35077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.