×

zbMATH — the first resource for mathematics

Products and vector bundles within the category of \(G\)-supermanifolds. (English. Russian original) Zbl 0843.58003
Sib. Math. J. 34, No. 1, 1-9 (1993); translation from Sib. Mat. Zh. 34, No. 1, 5-15 (1993).
Let \((M, A)\) be a supermanifold over the basic algebra \(B\) (graded commutative Banach algebra), where \(M\) is an underlying topological manifold and \(A\) is a sheaf of supercommutative \(B\)-algebras. It is known that \(A\) under some reasonable conditions is not a sheaf of functions. Therefore, many of the usual geometric constructions such as the products and vector bundles are not so immediate as in the usual differential geometry. The authors develop the concepts of a product of \(G\)-supermanifolds and (super)vector bundles in the spirit of Berezin-Leites-Konstant.

MSC:
58A50 Supermanifolds and graded manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Bartocci, U. Bruzzo, and D. Hernández Ruipérez, The Geometry of Supermanifolds, Kluwer Acad. Publ., Dordrecht (1991).
[2] Yu. I. Manin, Gauge Fields and Complex Geometry [in Russian], Nauka, Moscow (1984). · Zbl 0576.53002
[3] M. Rothstein, ?The axioms of supermanifolds and a new structure arising from them,? Trans. Amer. Math. Soc.,297, No. 1, 159-180 (1986). · Zbl 0636.58009 · doi:10.1090/S0002-9947-1986-0849473-8
[4] C. Bartocci and U. Bruzzo, ?Some remarks on the differential-geometric approach to supermanifolds,? J. Geom. Phys.,4, 391-404 (1987). · Zbl 0658.58009 · doi:10.1016/0393-0440(87)90020-9
[5] C. Bartocci, Elementi di Geometria Globale delle Supervarietá, Ph. D. Thesis, Univ. of Genova (1990).
[6] B. Kostant, ?Graded manifolds, graded Lie theory, and prequantization. Differential geometric methods in mathematical physics,? in: Lecture Notes in Math.,570, Springer, New York, 1977, pp. 177-306. · Zbl 0358.53024
[7] D. Hernández Ruipérez and J. Masque Muñoz, ?Global variational calculus on graded manifolds. I: Graded jet bundles, structure 1-form and graded infinitesimal contact transformations,? J. Math. Pures Appl.,63, 283-309 (1984). · Zbl 0509.58003
[8] A. Grothendieck, ?Produits tensoriels topologiqes et espaces nucléaires,? Mem. Amer. Math. Soc.,16 (1955)
[9] A. Rogers, ?Graded manifolds, supermanifolds and infinite-dimensional Grassmann algebras,? Comm. Math. Phys.,105, 375-384 (1986). · Zbl 0602.58003 · doi:10.1007/BF01205932
[10] B. S. De Witt, Supermanifolds, Cambridge University Press, London (1984).
[11] M. Batchelor, ?Two approaches to supermanifolds,? Trans. Amer. Math. Soc.,258, 257-270 (1980). · Zbl 0426.58003 · doi:10.1090/S0002-9947-1980-0554332-9
[12] A. Rogers, ?A global theory of supermanifolds,? J. Math. Phys.,21, 1352-1365 (1980). · Zbl 0447.58003 · doi:10.1063/1.524585
[13] A. Grothendieck and J. Dieudonné, Eléments de Géometrie Algébrique. I (Grundlehren Math. Wiss.,166), Springer, New York (1971).
[14] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. 1, Interscience, New York (1963). · Zbl 0119.37502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.