zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonparametric estimation of global functionals and a measure of the explanatory power of covariates in regression. (English) Zbl 0843.62045
Summary: In a nonparametric regression setting with multiple random predictor variables, we give the asymptotic distributions of estimators of global integral functionals of the regression surface. We apply the results to the problem of obtaining reliable estimators for the nonparametric coefficient of determination. This coefficient, which is also called Pearson’s correlation ratio, gives the fraction of the total variability of a response that can be explained by a given set of covariates. It can be used to construct measures of nonlinearity of regression and relative importance of subsets of regressors, and to assess the validity of other model restrictions. In addition to providing asymptotic results, we propose several data-based bandwidth selection rules and carry out a Monte Carlo simulation study of finite sample properties of these rules and associated estimators of explanatory power. We also provide two real data examples.

MSC:
62G07Density estimation
62J02General nonlinear regression
62E20Asymptotic distribution theory in statistics
62G20Nonparametric asymptotic efficiency
WorldCat.org
Full Text: DOI