×

zbMATH — the first resource for mathematics

Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. (English) Zbl 0843.65075
This paper presents:
– the nonconforming finite element approximation of linear second-order elliptic boundary value problems;
– the construction of element-oriented error estimators;
– an edge-oriented error estimator which can be derived by combining the techniques used in the conforming case with a suitable tool measuring the discontinuity of nonconforming finite element functions across the interior edges of the triangulation;
– some numerical results illustrating the refinement process as well as the performance of both the element-oriented and the edge-oriented a posteriori error estimator.

MSC:
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
Software:
PLTMG
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] [1] D. N. ARNOLD and F. BREZZI, 1985, Mixed and nonconforming finite element methods : implementation, post-processing and error estimates, Math. Modelling Numer. Anal., 19, pp.7-35. Zbl0567.65078 MR813687 · Zbl 0567.65078 · eudml:193443
[2] R. E. BANK, 1990, PLTMG - A software package for solving elliptic partial differential equations, User’s Guide 6.0., SIAM, Philadelphia. Zbl0717.68001 MR1052151 · Zbl 0717.68001
[3] R. E. BANK, A. H. SHERMAN and A. WEISER, 1983, Refinement algorithm and data structures for regular local mesh refinement, Scientific Computing, R. Stepleman et al. (eds.), Amsterdam, IMACS North-Holland, pp. 3-17. MR751598
[4] R. E. BANK and A. WEISER, 1985, Some posteriori error estimators for elliptic partial differential equations. Math. Comp., 44, pp. 283-301. Zbl0569.65079 MR777265 · Zbl 0569.65079 · doi:10.2307/2007953
[5] F. BORNEMANN, 1991, A sharpened condition number estimate for the BPX preconditioner of elliptic finite element problems on highly nonuniform triangulations, Konrad-Zese-Zentruman Berlin, Prepint SC 91-9.
[6] J. H. BRAMBLE, J. E. PASCIAK, J. XU, 1990, Parallel multilevel preconditioners. Math. Comp., 55, pp. 1-22. Zbl0703.65076 MR1023042 · Zbl 0703.65076 · doi:10.2307/2008789
[7] F. BREZZI and M. FORTIN, 1991, Mixed and hybrid finite element methods, Springer, Berlin-Heidelberg-New York. Zbl0788.73002 MR1115205 · Zbl 0788.73002
[8] P. G. CLARLET, 1978, The finite element method for elliptic problems, North-Holland, Amsterdam. Zbl0383.65058 MR520174 · Zbl 0383.65058
[9] P. DEUFLHARD, P. LEINEN and H. YSERENTANT, 1989, Concepts of an adaptive hierarchical finite element code, IMPACT comut. Sci. Engrg., 1, pp. 3-35. Zbl0706.65111 · Zbl 0706.65111 · doi:10.1016/0899-8248(89)90018-9
[10] P. OSWALD, 1991, On a BPX-preconditioner for PI elements, Prepint, FSU Jena. Zbl0787.65018 · Zbl 0787.65018 · doi:10.1007/BF02243847
[11] B. SZABÓ and I. BABU KA, 1991, Finite element analysis, John Wiley & Sons, New York. · Zbl 0792.73003
[12] B. WOHLMUTH and R. H. W. HOPPE, 1994, Multilevel approaches to nonconforming finite element discretizations of linear second order elliptic boundary value problems, to appear in Journal of Computation and Information, 4, pp. 73-86.
[13] J. XU, 1989, Theory of multilevel methods, Department of Mathematics Pennstate, Report No. AM 48.
[14] [14] H. YSERENTANT, 1990, Two preconditioners based on the multilevel splitting of finite element spaces, Numer. Math, 58, pp. 163-184. Zbl0708.65103 MR1069277 · Zbl 0708.65103 · doi:10.1007/BF01385617 · eudml:133494
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.