zbMATH — the first resource for mathematics

Gödel ’96. Logical foundations of mathematics, computer science and physics – Kurt Gödel’s legacy. Proceedings of a conference, Brno, Czech Republic, August 1996. (English) Zbl 0844.00017
Lecture Notes in Logic. 6. Berlin: Springer-Verlag. viii, 322 p. (1996).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Feferman, Solomon, Gödel’s program for new axioms: Why, where, how and what?, 3-22 [Zbl 0857.03034]
Baaz, Matthias, Infinite-valued Gödel logics with 0-1-projections and relativizations, 23-33 [Zbl 0862.03015]
Ellis, G. F. R., Contributions of K. Gödel to relativity and cosmology, 34-49 [Zbl 0856.01016]
Kushner, Boris A., Kurt Gödel and the constructive mathematics of A. A. Markov, 50-63 [Zbl 0858.03008]
Parsons, Charles, Hao Wang as philosopher, 64-80 [Zbl 0952.03500]
Pudlák, Pavel, A bottom-up approach to foundations of mathematics, 81-97 [Zbl 0857.03023]
Sieg, Wilfried; Byrnes, John, \(K\)-graph machines: Generalizing Turing’s machines and arguments, 98-119 [Zbl 0856.03032]
Takeuti, Gaisi; Yasumoto, Masahiro, Forcing on bounded arithmetic, 120-138 [Zbl 0864.03038]
Visser, Albert, Uniform interpolation and layered bisimulation, 139-164 [Zbl 0854.03026]
Anderson, C. Anthony; Gettings, Michael, Gödel’s ontological proof revisited, 167-172 [Zbl 0855.03005]
Araragi, Tadashi, A uniform theorem proving tableau method for modal logic, 173-182 [Zbl 0854.03010]
Bellè, Dorella; Parlamento, Franco, Decidability of the \(\exists^*\forall^*\)-class in the membership theory NWL, 183-194 [Zbl 0858.03015]
Benke, Marcin, A logical approach to complexity bounds for subtype inequalities, 195-204 [Zbl 0854.03042]
Blankertz, Benjamin; Weiermann, Andreas, How to characterize provably total functions by the Buchholz operator method, 205-213 [Zbl 0854.03053]
Hon, Giora, Completeness has to be restricted: Gödel’s interpretation of the parameter \(t\), 214-223 [Zbl 0856.01020]
Johannsen, Jan, A bounded arithmetic theory for constant depth threshold circuits, 224-234 [Zbl 0858.03057]
Kristiansen, Lars, Information content and computational complexity of recursive sets, 235-246 [Zbl 0866.03022]
Meyer, Robert K., Kurt Gödel and the consistency of \({\mathbf R}^{\#\#}\), 247-256 [Zbl 0877.03004]
Paulík, Leonard, Best possible answer is computable for fuzzy SLD-resolution, 257-266 [Zbl 0854.03009]
Stärk, Robert F., The finite stages of inductive definitions, 267-290 [Zbl 0854.03044]
Stöltzner, Michael, Gödel and the theory of everything, 291-306 [Zbl 0856.01024]
Zarach, Andrzej M., Replacement \(\nrightarrow\) collection, 307-322 [Zbl 0854.03047]

00B25 Proceedings of conferences of miscellaneous specific interest
03-06 Proceedings, conferences, collections, etc. pertaining to mathematical logic and foundations