Brazil, M.; Cole, T.; Rubinstein, J. H.; Thomas, D. A.; Weng, J. F.; Wormald, N. C. Minimal Steiner trees for \(2^ k \times 2^ k\) square lattices. (English) Zbl 0844.05036 J. Comb. Theory, Ser. A 73, No. 1, 91-110 (1996). The authors prove a conjecture of Chung, Graham, and Gardner, giving the form of the minimal Steiner trees for the set of points comprising the vertices of a \(2^k\times 2^k\) square lattice. The basic building block of these trees is the minimal Steiner tree of the vertices of a (unit) square. Reviewer: J.Linhart (Salzburg) Cited in 5 Documents MSC: 05C05 Trees 05C35 Extremal problems in graph theory Keywords:minimal Steiner trees; square lattice × Cite Format Result Cite Review PDF Full Text: DOI