zbMATH — the first resource for mathematics

A construction of hyperbolic hypersurface of \(P^ n(C)\). (English) Zbl 0844.32018
S. Kobayashi conjectured in 1970 that a generic hypersurface of large degree of the complex projective space \(\mathbb{P}^n (\mathbb{C})\) of dimension \(n\) is hyperbolic, and that its complement is hyperbolic and moreover hyperbolically embedded into \(\mathbb{P}^n (\mathbb{C})\). Even the existence of such hypersurfaces has been known only for \(n \leq 3\). In this paper we construct such hypersurfaces for all \(n \geq 2\).
Reviewer: K.Masuda (Tokyo)

32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
32F45 Invariant metrics and pseudodistances in several complex variables
Full Text: DOI EuDML
[1] Y. Adachi and Masakazu Suzuki, On the family of holomorphic mappings into projective space with lacunary hypersurfaces, J. Math. Kyoto Univ.30, (1990), 451-459 (1990) · Zbl 0733.32019
[2] Y. Adachi and Masakazu Suzuki, Degeneracy points of the Kobayashi pseudodistances on complex manifolds, Proc. Symp. Pure Math.52, Vol. 2, pp. 41-51, Amer. Math. Soc., Providence, Rhode Island, 1991 · Zbl 0742.32016
[3] K. Azukawa and Masaaki Suzuki, Some examples of algebraic degeneracy and hyperbolic manifolds, Rocky Mountain J. Math.10, 655-659 (1980) · Zbl 0434.32023
[4] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc.235, 213-219 (1978) · Zbl 0416.32013
[5] R. Brody and M. Green, A family of smooth hyperbolic hypersurfaces inP 3, Duke Math. J.44, 873-874 (1977) · Zbl 0383.32009
[6] E. Bombieri and J. Mueller, The generalized equation in function fields, J. Number Theory39, 339-350 (1991) · Zbl 0739.11012
[7] H. Cartan, Sur les z?ros des combinaisons lin?aires dep fonctions holomorphes donn?es, Mathematica7, 5-31 (1933) · JFM 59.0327.03
[8] G. Faltings, Diophantine approximation on Abelian varieties, Ann. Math.133, 549-576 (1991) · Zbl 0734.14007
[9] H. Grauert, Jetmetriken und hyperbolische Geometrie, Math. Z.200, 149-168 (1989) · Zbl 0664.32020
[10] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.
[11] S. Kobayashi, Intrinsic distances, measures, and geometric function theory, Bull. Amer. Math. Soc.,82, 357-416 (1976) · Zbl 0346.32031
[12] S. Lang, Higher dimensional Diophantine problems, Bull. Amer. Math. Soc.80, 779-787 (1974) · Zbl 0298.14014
[13] S. Lang, Hyperbolic and Diophantine analysis, Bull. Amer., Math. Soc.14, 159-205 (1986) · Zbl 0602.14019
[14] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York-Berlin-Heidelberg, 1987 · Zbl 0628.32001
[15] A. Nadel, Hyperbolic surfaces inP 3. Duke Math. J.58, 749-771 (1989) · Zbl 0686.32015
[16] J. Noguchi, Hyperbolic manifolds and Diophantine geometry, Sugaku Expositions,4, pp. 63-81, Amer. Math. Soc., Providence, Rhode Island, 1991 · Zbl 0731.14016
[17] J. Noguchi, Meromorphic mappings into compact hyperbolic complex spaces and geometric Diophantine problem, Internat. J. Math.3, 277-289 (1992) · Zbl 0759.32016
[18] J. Noguchi, Some problems in value distribution and hyperbolic manifolds, Proc. International Symp., Holomorphic Mappings, Diophantine Geometry and Related Topics in Honor of Prof. S. Kobayashi, pp. 66-79, RIMS. Kyoto Univ., October 26-30, 1992
[19] J. Noguchi, Some topics in Nevanlinna theory, hyperbolic manifolds and Diophantine geometry, Geometry and Analysis on Complex Manifolds, Festschrift for S. Kobayashi, eds. T. Mabuchi, J. Noguchi, and T. Ochiai, pp. 140-145, World Sci. Publ., Singapore, 1994. · Zbl 0886.32017
[20] J. Noguchi, Nevanlinna-Cartan theory over function fields and a Diophantine equation, preprint · Zbl 0880.11049
[21] J. Noguchi and T. Ochiai, Geometric Function Theory in Several Complex Variables, Transl. Math. Mono.80, Amer. Math. Soc., Providence, Rhode, Island, 1990 · Zbl 0713.32001
[22] M. Ru and P.M. Wong, Integral points ofP n (C)?{2n+1 hyperplanes in general position}, Invent. Math.106, 195-216 (1991) · Zbl 0758.14007
[23] P. Vojta, Diophantine Approximations and Value Distribution Theory, Lecture Notes in Math.1239, Springer-Verlag, Berlin-Heidelberg-New York, 1987 · Zbl 0609.14011
[24] P.M. Wong, Recent results in hyperbolic geometry and Diophantine geometry, International Symposium, Holomorphic Mappings, Diophantine Geometry and Related Topics, R.I.M.S. Lect. Notes Ser.819, pp. 120-135, R.I.M.S., Kyoto University, 1993
[25] M.G. Zaidenberg, Stability of hyperbolic imbeddedness and construction of examples, Math. USSR Sbornik63, 351-361 (1989) · Zbl 0668.32023
[26] M.G. Zaidenberg, Hyperbolicity in projective spaces, International Symposium, Holomorphic Mappings, Diophantine Geometry and Related Topics, R.I.M.S. Lect. Notes Ser.819, pp. 136-156, R.I.M.S., Kyoto University, 1993
[27] M.G. Zaidenberg and V.Ya. Lin, Finiteness theorems for holomorphic maps, Several Complex Variables III, Encyclopeadia Math. Sci.9, pp. 113-172, Springer-Verlag, Berlin-Heidelberg-New York, 1989
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.