×

On a conjecture due to J. L. Lions. (English) Zbl 0844.35082

Let \(\Omega\) be a bounded domain in \(\mathbb{R}^3\) and \(\omega\subset \Omega\). \(( v, p)\) is the solution in the sense of distributions to the initial-boundary value problem for Navier-Stokes equations \[ v_t+ ( v\cdot \nabla) v -\nu\Delta v+ \nabla p= X_\omega f,\;\nabla\cdot v= 0\quad\text{in }\Omega\times (0, T),\tag{1} \]
\[ v= 0\quad\text{on} \quad \partial\Omega\times (0, T),\quad v(x, 0)= 0, \] where \( f\in L_2(\omega\times (0, T))\). \(X_\omega\) is the characteristic function on the set \(\omega\). \(u( f)\) denotes the set of functions \( v\) such that \(( v, p)\) is a weak solution of the problem (1). It is proved that the subspace of \(H(\Omega)\) which is spanned by \((\cup_f u( f))\cap H\) is dense in \(H\). For the two-dimensional case this result has been obtained by the authors [in ‘On a conjecture due to J. L. Lions concerning weak controllability of Navier-Stokes flows’, Proc. Equadiff ’91 Conference, Barcelona, C. Perello (ed.) et al., 126-135 (World Scientific 1991)].

MSC:

35Q30 Navier-Stokes equations
35D05 Existence of generalized solutions of PDE (MSC2000)
93B05 Controllability
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Constantin, P.; Foias, C., Navier-Stokes Equations (1988), The University of Chicago Press: The University of Chicago Press Chicago · Zbl 0687.35071
[2] Hope, E., Uber die aufangswertanfgebe für die hydrodynamischen grundgleichungen, Math. Nachr., 4, 213-231 (1950) · Zbl 0042.10604
[3] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow (1963), Gordon and Breach: Gordon and Breach New York · Zbl 0121.42701
[4] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Dunod, Gauthiers-Villars: Dunod, Gauthiers-Villars Paris · Zbl 0189.40603
[5] Heywood, J. G., Open problems in the theory of Navier-Stokes equations, (Heywood, J. G., The Navier-Stokes Equations. Theory and Numerical Methods. The Navier-Stokes Equations. Theory and Numerical Methods, Lecture Notes in Mathematics, Vol. 1431 (1988), Springer: Springer Berlin) · Zbl 0194.41402
[6] Lions, J. L., Remarques sur la contrôlabilité approchée, (Proc. Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos (1990), University of Malaga: University of Malaga Spain) · Zbl 0752.93037
[7] Lions, J. L., Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30, 1, 1-68 (1988) · Zbl 0644.49028
[8] Bardos, C.; Tartar, L., Sur l’unicité rétrograde des équations paraboliques et quelques questions voisines, Archs ration. Mech. Analysis, 50, 10-25 (1973) · Zbl 0258.35039
[9] Fernández-Cara, E.; Real, J., On a conjecture due to J. L. Lions concerning weak controllability of Navier-Stokes flows, Proc. Equadiff’91 Conference (1991), (to appear).
[10] Brézis, H., Analyse fonctionnelle. Théorie et applications (1983), Masson: Masson Paris · Zbl 0511.46001
[11] Mizohata, S., Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques, Mem. Coll. Sci. Univ. Kyoto, Sér. A, 31, 3, 219-239 (1958) · Zbl 0087.09303
[12] Lions, J. L., Lectures given at the “Collège de France” (1990/1991)
[13] Saut, J. C.; Scheurer, B., Unique continuation for some evolution equations, J. diff. Eqns, 66, 118-139 (1987) · Zbl 0631.35044
[14] Hörmander, L., Linear Partial Differential Operators (1969), Springer: Springer Berlin · Zbl 0177.36401
[15] Nirenberg, L., Uniqueness in Cauchy problems for differential equations with constant coefficients, Communs pure appl. Math., 10, 89-105 (1957) · Zbl 0077.09402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.