Dubois-Violette, Michel; Michor, Peter W. A common generalization of the Frölicher-Nijenhuis bracket and the Schouten bracket for symmetric multivector fields. (English) Zbl 0844.58002 Indag. Math., New Ser. 6, No. 1, 51-66 (1995). A. Frölicher and A. Nijenhuis [Indag. Math. 18, 338-359 (1956; Zbl 0079.37502)] constructed a generalization of the usual commutator bracket on tangent vector fields to yield a graded Lie algebra of tangent vector-valued forms. This bracket has been applied, for example, in analytical mechanics by C. Godbillon [‘Géometrie differentielle et méchanique analytique’, Paris, Hermann (1969; Zbl 0174.24602)]; and by J. Klein [Ann. Inst. Fourier 12, 1-124 (1962; Zbl 0281.49026)]; to give another definition of connection, by J. Grifone [Ann. Inst. Fourier 22, No. 1, 287-334 (1972; Zbl 0219.53032)] and to study certain Lie subalgebras of the Lie algebra of vector fields which preserve the vertical or/and the horizontal distributions by J. Klein [Colloq. Math. Soc. János Bolyai 46, 665-686 (1988; Zbl 0646.58002)] or a universal version of these results by C. T. J. Dodson and the reviewer [Math. Proc. Camb. Philos. Soc. 103, No. 3, 515-534 (1988; Zbl 0667.53025)]. Another classical extension of the usual bracket of vector fields was defined by J. A. Schouten [Indag. Math. 2, 449-452 (1940; Zbl 0023.17002)] to all symmetric multivector fields. The aim of this paper is to find a common generalization of the Frölicher-Nijenhuis and the Shouten brackets. The authors include a nice example in Riemannian manifolds where this extension would be welcome. The proof of the main theorem is somewhat technical and as the authors observe, their generalization is similar to the one defined by A. M. Vinogradov [Mat. Zametki 47, No. 6, 138-140 (1990; Zbl 0712.58059)]. Reviewer: Lilia Del Riego (San Luis Potosí) Cited in 1 ReviewCited in 11 Documents MSC: 58A10 Differential forms in global analysis 37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems 17B66 Lie algebras of vector fields and related (super) algebras 17B70 Graded Lie (super)algebras 53C65 Integral geometry Keywords:bundle sections; symmetric multivector fields; differential forms Citations:Zbl 0079.37502; Zbl 0174.24602; Zbl 0281.49026; Zbl 0219.53032; Zbl 0646.58002; Zbl 0667.53025; Zbl 0023.17002; Zbl 0712.58059 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Cabras, A.; Vinogradov, A. M., Extensions of the Poisson bracket to differential forms and multi-vector fields, J.G.P., 9, 75-100 (1992) · Zbl 0748.58008 [2] Frölicher, A.; Nijenhuis, A., Theory of vector valued differential forms, Indagationes Math., 18, 338-359 (1956), Part I · Zbl 0079.37502 [3] Frölicher, A.; Nijenhuis, A., Invariance of vector form operations under mappings, Comm. Math. Helv., 34, 227-248 (1960) · Zbl 0090.38703 [4] Kolár̆, I.; Michor, P. W.; Slovák, J., Natural operations in differential geometry (1993), Springer-Verlag: Springer-Verlag Berlin-Heidelberg-New York · Zbl 0782.53013 [5] Michor, P. W., A generalisation of Hamiltonian mechanics, J. Geometry and Physics, 2, 2, 67-82 (1985), MR 87k:58093 · Zbl 0587.58004 [6] Michor, P. W., Remarks on the Frölicher-Nijenhuis bracket, (Krupka, D.; Švec, A., Proceedings of the Conference on Differential Geometry and its Applications. Proceedings of the Conference on Differential Geometry and its Applications, Brno 1986 (1987), D. Reidel), 197-220 · Zbl 0633.53024 [7] Michor, P. M., Remarks on the Schouten-Nijenhuis bracket, Suppl. Rendiconti del Circolo Matematico di Palermo, Serie II, 16, 208-215 (1987), ZM 646.53013 · Zbl 0646.53013 [8] Monterde, J., Generalized symplectomorphisms, (Carreras, F. J.; Gil-Medrano, O.; Naveira, A. M., Differential Geometry, Peñiscola, 1988. Differential Geometry, Peñiscola, 1988, Lecture Notes in Math., vol. 1410 (1989), Springer-Verlag: Springer-Verlag Berlin), 262-271 · Zbl 0684.58039 [9] Nijenhuis, A., Jacobi-type identities for bilinear differential concomitants of certain tensor fields I, Indagationes Math., 17, 390-403 (1955) · Zbl 0068.15001 [10] Nijenhuis, A., On a class of common properties of some different types of algebras I, II, Niew Archief voor Wiskunde, 17, 3, 17-46 (1969) · Zbl 0179.33204 [11] Nijenhuis, A.; Richardson, R., Deformation of Lie algebra structures, J. Math. Mech., 17, 89-105 (1967) · Zbl 0166.30202 [12] Tulczyjew, W. M., The graded Lie algebra of multivector fields and the generalized Lie derivative of forms, Bull. Acad. Polon. Sci., 22, 9, 937-942 (1974) · Zbl 0303.53016 [13] Schouten, J. A., Über Differentialkonkomitanten zweier kontravarianter Gröβen, Indagationes Math., 2, 449-452 (1940) · Zbl 0023.17002 [14] Vinogradov, A. M., Unification of Schouten-Nijenhuis and Frölicher-Nijenhuis brackets, cohomology and super-differential operators, Sov. Mat. Zametki, 47 (1990) · Zbl 0712.58059 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.