zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An explicit hybrid method of Numerov type for second-order periodic initial-value problems. (English) Zbl 0844.65061
The author introduces and tests a new algorithm for approximation to periodic solutions of a nonlinearly perturbed system of linear ordinary differential equations having the form $$y''(t)= Ay(t)+ g(t, y(t)),\quad t_0\le t< \infty.\tag i$$ The algorithm is fourth-order four stage of Numerov type, and is designed to have minimal frequency distortion when $g\equiv 0$ [cf. {\it M. M. Chawla} and {\it P. S. Rao}, J. Comput. Appl. Math. 15, 329-337 (1986; Zbl 0598.65054)]. Numerical results obtained with four test problems indicate that the new method performs better than other methods of Numerov type as well as methods using symplectic integrations and the LSODE code.

MSC:
65L06Multistep, Runge-Kutta, and extrapolation methods
65L05Initial value problems for ODE (numerical methods)
34C25Periodic solutions of ODE
34A34Nonlinear ODE and systems, general
Software:
ODEPACK
WorldCat.org
Full Text: DOI
References:
[1] Calvo, M. P.: Canonical Runge-Kutta-Nyström methods. Ph.d. thesis (1992) · Zbl 0802.65089
[2] Chawla, M. M.: Numerov made explicit has better stability. Bit 24, 117-118 (1984) · Zbl 0568.65042
[3] Chawla, M. M.; Rao, P. S.: A numerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. J. comput. Appl. math. 11, 277-281 (1984) · Zbl 0565.65041
[4] Chawla, M. M.; Rao, P. S.: A numerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. II: explicit method. J. comput. Appl. math. 15, 329-337 (1986) · Zbl 0598.65054
[5] Franco, J. M.; Palacios, M.: High-order P-stable multistep methods. J. comput. Appl. math. 30, 1-10 (1990) · Zbl 0726.65091
[6] Gladwell, I.; Thomas, R. M.: Damping and phase analysis for some methods for solving second order ordinary differential equations. Internat. J. Numer. methods eng. 19, 495-503 (1983) · Zbl 0513.65053
[7] Hindmarsh, A. C.: Odepack, a systematized collection of ODE solvers. Scientific computing, 55-64 (1983)
[8] Kinoshita, H.; Yoshida, H.; Nakai, H.: Simplectic integrators and their application to dynamical astronomy. Celest. mech. Dyn. astron. 50, 59-71 (1991) · Zbl 0724.70019
[9] Lambert, J. D.; Watson, I. A.: Symmetric multistep methods for periodic initial value problems. J. ima 18, 189-202 (1976) · Zbl 0359.65060
[10] Meneguette, M.: Chawla-numerov method revisited. J. comput. Appl. math. 36, 247-250 (1991) · Zbl 0751.65048
[11] Sanz-Serna, J. M.: Symplectic integrators for Hamiltonian problems: an overview. Acta numerica 1, 243-286 (1992) · Zbl 0762.65043
[12] Van Der Houwen, P. J.; Sommeijer, B. P.: Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. anal. 24, 595-617 (1987) · Zbl 0624.65058
[13] Yoshida, H.: Construction of higher order symplectic integrators. Phys. lett. A 150, 262-268 (1990)