Measuring credibility of compensatory preference statements when trade-offs are interval determined. (English) Zbl 0845.90007

Summary: This paper studies how an overall fuzzy preference relation can be constructed in the compensatory context of the ‘simple additive difference model’, when imprecision on the tradeoffs has to be taken into account. Three credibility indices of preferences are analysed and illustrated by a numerical example. Arguments are presented supporting the use of the third index, for which an interesting transitivity property (which was an open problem) is proved.


91B08 Individual preferences
91B06 Decision theory
03E72 Theory of fuzzy sets, etc.
Full Text: DOI


[1] Bana e Costa, C.A.: 1988, ?A methodology for sensitivity analysis in three-criteria problems: a case study in municipal management?,European Journal of Operational Research 33, 159-173.
[2] Bana e Costa, C.A.: 1990a, ?An additive value function technique with a fuzzy outranking relation for dealing with poor intercriteria preference information?, in C.A. Bana e Costa (Ed.),Readings in Multiple Criteria Decision Aid, Springer-Verlag, pp. 351-382.
[3] Bana e Costa, C.A.: 1990b, ?Une méthode pour l’aide à la décision en situations multicritères et multiacteurs?,Sistemi Urbani 3, 301-332.
[4] Bana e Costa, C.A. and Ferreira, J.A.: 1992, ?Computing volumes of convex polyhedrons in ? n : the software PROBE?, working paper,CESUR, Lisbon, Portugal.
[5] Bouyssou, D.: 1986, ?Some remarks on the notion of compensation in MCDM?,European Journal of Operational Research 26(1), 150-160. · Zbl 0598.90057
[6] Charnetski, J.R. and Soland, R.M.: 1978, ?Multiple-attribute decision making with partial information: the comparative hypervolume criterion?,Naval Logistics Quarterly 25, 279-288. · Zbl 0389.90002
[7] Charnetski, J.R. and Soland, R.M.: 1979, ?Multiple-attribute decision making with partial information: the expected value criterion?,Naval Logistics Quarterly 26, 249-256. · Zbl 0401.90001
[8] Eiselt, H.A. and Laporte, G.: 1992, ?The use of domains in multicriteria decision making?,European Journal of Operational Research 61, 292-298. · Zbl 0757.90040
[9] French, S.: 1988,Decision Theory: An Introduction to the Mathematics of Rationality, Ellis Horwood Limited. · Zbl 0667.90004
[10] Hazen, G.B.: 1986, ?Partial information, dominance, and potential optimality in multiattribute utility theory?,Operations Research 34(2), 296-310. · Zbl 0625.90048
[11] Jacquet-Lagrèze, E.: 1975, ?How can we use the notion of semi-orders to build outranking relations in multi-criteria decision making?, in D. Wendt and C. Vlek (Eds.),Probability and Human Decision Making, Reidel, pp. 87-112. · Zbl 0327.90003
[12] Jacquet-Lagrèze, E.: 1982, ?Binary preference indices: a new look on multicriteria aggregation procedures?,European Journal of Operational Research 10(1), 26-32. · Zbl 0481.90003
[13] Keeney, R.L. and Nair, K.: 1977, ?Selecting nuclear power plant sites in the Pacific northwest using decision analysis?, in D.E. Bell, R.L. Keeney and H. Raiffa (Eds.),Conflicting Objectives in Decisions, John Wiley, pp. 298-322.
[14] Kirkwood, C.W.: 1982, ?A case history of nuclear power plant site selection?,Journal of the Operational Research Society 33, 353-363.
[15] Kirkwood, C.W. and Sarin, R.: 1985, ?Ranking with partial information: a method and an application?,Operations Research 33, 38-48. · Zbl 0569.90052
[16] Lasserre, J.B.: 1983, ?An analytical expression and an algorithm for the volume of a convex polyhedron in ? n ?,Journal of Optimization Theory and Applications 39(3), 363-377. · Zbl 0487.52006
[17] Mayer, M. and Reisner, S.: 1991, ?A geometric property of the boundary of symmetric convex bodies and convexity of flotation surfaces?,Geometriae Dedicata 37, 327-337. · Zbl 0731.52002
[18] de Montgolfier, J. and Bertier, P.: (1978),Approche Multicritère des Problèmes de Décision, Editions Hommes et Techniques.
[19] Roy, B.: 1971, ?Problems and methods with multiple objective functions?,Mathematical Programming 1(2), 239-266. · Zbl 0254.90061
[20] Roy, B.: 1973, ?How outranking relation helps multiple criteria decision making?, in J.L. Cochrane and M. Zeleny (Eds.),Multiple Criteria Decision Making, The University of South Carolina Press, pp. 179-201.
[21] Roy, B.: 1974, ?Critères multiples et modélisation des préférences (l’apport des relations de surclassement)?,Revue d’Economie Politique 1, 1-44.
[22] Roy, B.: 1985,Méthodologie Multicritère d’Aide à la Décision, Economica.
[23] Roy, B. and Bouyssou, D.: 1993,Aide Multicritère à la Décision: Méthodes et Cas, Economica. · Zbl 0925.90230
[24] Sarin, R.K.: (1977), ?Interactive evaluation and bound procedure for selecting multi-attributed alternatives?, in M.K. Starr and M. Zeleny (Eds.),Multiple Criteria Decision Making, North-Holland, pp. 211-224.
[25] Schneller, G.O. and Sphicas, G.P.: 1983, ?Decision making under uncertainty: Starr’ domain criterion?,Theory and Decision 15, 321-336. · Zbl 0521.90005
[26] Siskos, J. Lochard, J., and Lombard, J.: 1986, ?A multicriteria decision-making methodology under fuzziness: application to the evaluation of radiological protection in nuclear power plants?, in H.-J. Zimmermann, L.A. Zadeh and B.R. Gaines (Eds.),Fuzzy Sets and Decision Analysis, North-Holland, pp. 261-284. · Zbl 0538.90040
[27] Starr, M.K.: 1962,Product Design and Decision Theory, Prentice-Hall.
[28] Starr, M.K.: 1966, ?A discussion of some normative criteria for decision making under uncertainty?,Industrial Management Review 8, 71-78.
[29] Trejos, M.: 1991, ?Toma de decisiones multicriterio: Método de relationes binarias de sobreclasificación que usa una familia de functiones de utilidad?,Doctoral Thesis, Facultat de Ingeniería de la Universidad Nacional Autónoma de México.
[30] Tversky, A.: 1969, ?Intransitivity of preferences?,Psychological Review 76, 31-48.
[31] Zimmermann, H.-J.: 1990, Decision making in ill-structured environments and with multiple criteria?, in C.A. Bana e Costa (Ed.),Readings in Multiple Criteria Decision Aid, Springer-Verlag, pp. 119-151.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.