Gekeler, Ernst-Ulrich Analytical construction of Weil curves over function fields. (English) Zbl 0846.11037 J. Théor. Nombres Bordx. 7, No. 1, 27-49 (1995). The Shimura-Taniyama-Weil conjecture is valid for function fields \(K\) of one variable over a finite field. It is proved by combining deep results of Grothendieck, Jacquet-Langlands and Drinfeld [for details see the author and the reviewer, J. Reine Angew. Math. 476, 27–93 (1996; Zbl 0848.11029); cited [G-R] below]. Let \(\Gamma\) be an arithmetic subgroup of \(\text{GL}_2 (K)\). One knows, following [G-R], that \(\overline \Gamma = \Gamma^{ab}/ \Gamma_{tors}\) can be canonically interpreted as a \(\mathbb Z\)-module of automorphic forms for a convenient compact open subgroup of the adelization of \(\text{GL}_2 (K)\), with values in \(\mathbb Z\) and that transform like the special representation (and, up to tensorization by \(\mathbb Q\), all such automorphic forms can be recovered in that way). Moreover, there exists on \(\overline \Gamma \times \overline \Gamma\) a pairing, coming from the existence of theta functions (see [G-R]), that agrees with the (conveniently normalized) Petersson scalar product. Let \(\varphi \in \overline \Gamma\) be a normalized Hecke eigenform; we have a surjective morphism (the Weil uniformization) \(p_\varphi : J_\Gamma \to E_\varphi\) where \(J_\Gamma\) is the Jacobian of the modular curve associated to \(\Gamma\) and \(E_\varphi\) is the strong Weil curve with respect to \(\varphi\), this morphism being compatible with the uniformizations of \(J_\Gamma\) and \(E_\varphi\) at the place \(\infty\) of \(K\) ([G-R]). The author gives new main information about the Weil uniformization \(p_\varphi\), at least when the base field is \(K = \mathbb F_q (T)\). In particular, he proves that the degree of \(p_\varphi\) and the valuation of the modular invariant \(j (E_\varphi)\) can be calculated from the locus of \(\varphi\) in the lattice \(\overline \Gamma\) (equipped by its pairing). Enlightening examples are given in the last paragraph. Reviewer: M.Reversat (Toulouse) Cited in 2 ReviewsCited in 19 Documents MSC: 11G05 Elliptic curves over global fields 11R39 Langlands-Weil conjectures, nonabelian class field theory 11G09 Drinfel’d modules; higher-dimensional motives, etc. Keywords:degree of the Weil uniformization; Shimura-Taniyama-Weil conjecture; function fields; automorphic forms; normalized Hecke eigenform; Weil uniformization; strong Weil curve; valuation of the modular invariant Citations:Zbl 0848.11029 × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML EMIS References: [1] Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models, Grundlehren. Math. Wiss., Springer, Berlin-New York, 1990. · Zbl 0705.14001 [2] Deligne, P., Formes modulaires et representations de GL(2). In: , vol. 349, Springer, BerlinHeidelbergNew York, 1974., pp. 55-105. · Zbl 0271.10032 [3] Deligne, P. and Husemöller, D., Survey of Drinfeld modules., Contemp. Math.67 (1987), 25-91. · Zbl 0627.14026 [4] Drinfeld, V.G., Elliptic Modules, Math. Sbornik94 (1974), 594-627 (Russian); English Translation: Math. USSR-Sbornik23 (1976), 561-592. · Zbl 0321.14014 [5] Fresnel, J. et Put, M. van der, Géométrie Analytique Rigide et Applications, Progr. Math., vol. 18, Birkhauser, BaselBoston, 1981. · Zbl 0479.14015 [6] Gekeler, E.-U., Drinfeld-Moduln und modulare Formen über rationalen Funktionenkörpern, Bonner Math. Schriften119 (1980). · Zbl 0446.14018 [7] Gekeler, E.-U., Automorphe Formen über Fq(T) mit kleinem Führer, Abh. Math. Sem. Univ. Hamburg55 (1985), 111-146. · Zbl 0564.10026 [8] Gekeler, E.-U., Drinfeld Modular Curves, , vol. 1231, Springer, BerlinHeidelbergNew York, 1986. · Zbl 0607.14020 [9] Gekeler, E.-U., On the coefficients of Drinfeld modular forms, Invent. math. 93 (1988), 667-700. · Zbl 0653.14012 [10] Gekeler, E.-U. et Reversat, M., Jacobians of Drinfeld modular curves, submitted. · Zbl 0848.11029 [11] Gerritzen, L., On non-archimedean representations of abelian varieties, Math. Ann.196 (1972), 323-346. · Zbl 0255.14013 [12] Gerritzen, L. and Put, M. van der, Schottky Groups and Mumford Curves, , vol. 817, Springer, BerlinHeidelbergNew York, 1980. · Zbl 0442.14009 [13] Goldmann, O. and Iwahori, N., The space of p-adic norms, Acta Math.109 (1963),137-177. · Zbl 0133.29402 [14] Goss, D., π-adic Eisenstein Series for Function Fields, Comp. Math.41 (1980), 3-38. · Zbl 0422.10020 [15] Jacquet, H. and Langlands, R.P., Automorphic forms on GL(2), , vol. 114, Springer, BerlinHeidelbergNew York, 1970. · Zbl 0236.12010 [16] Mumford, D., An analytic construction of degenerating abelian varieties over complete rings, Comp. Math.24 (1972), 239-272. · Zbl 0241.14020 [17] Nonnengardt, U., Arithmetisch definierte Graphen über rationalen Funktionenkörpern, Diplomarbeit, Saarbrücken (1994). [18] Radtke, W., Diskontinuierliche Gruppen im Funktionenkörperfall, Dissertation, Bochum (1984). · Zbl 0572.14017 [19] Ribet, K., Mod p Hecke operators and congruences between modular forms, Invent. Math.71 (1983), 193-205. · Zbl 0508.10018 [20] Schweizer, A., Dissertation, in preparation. [21] Serre, J.-P., Trees, Springer, Berlin- Heidelberg-New York, 1980. · Zbl 0548.20018 [22] Tate, J., Algorithm for determining the type of a singular fiber in an elliptic pencil. , vol. 476, Springer, BerlinHeidelbergNew York, 1975, pp. 33-52. · Zbl 1214.14020 [23] Teitelbaum, J., Modular symbols for Fq(T), Duke Math. J. 68 (1992), 271-295. · Zbl 0777.11021 [24] Weil, A., Dirichlet series and automorphic forms, , vol. 189, Springer, BerlinHeidelbergNew York, 1971. · Zbl 0218.10046 [25] Zagier, D., Modular parametrizations of elliptic curves, Canad. Math. Bull.28 (1985), 372-384. · Zbl 0579.14027 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.